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Foreword

Those of us Involved in the creation of the Handbook of Artificial Intelligence have
attempted to make the concepts, methods, tools, and main results of artificial intelligence
research accessible to a broad scientific and engineering audience. Currently, Al work is
familiar mainly to its practicing specialists and other interested computer scientists. Yet the
field is of growing interdisciplinary interest and practical importance. With this book we are
trying to build bridges that are easily crossed by engineers and scientists who want to
understand and use Al techniques.

In the Handbook we Intend to cover the breadth and depth of Al, presenting general
overviews of the scientific issues, as well as detailed discussions of particular techniques
and important Al systems. Throughout we have tried to keep in mind the reader who Is not a
specialist in Al.

As the cost of computation continues to fall, new areas of computer applications
become potentially viable. For many of these areas, there do not exist mathematical "cores"
to structure calculational use of the computer. Such areas will Inevitably be served by
symbolic models and symbolic inference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that it Is
urgent for Al to "go public" in the manner intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fill the vacuum. Lay reviews, like Margaret Boden's Artificial
Intelligence and Natural Man and Pamela McCorduck's Machines Who Think, have tried to
explain what Is important and Interesting about Al, and how research in Al progresses
through our programs. In addition, there are a few textbooks that attempt to present a more
detailed view of selected areas of Al, for the serious student of computer science. But no
textbook can hope to describe all of the sub-areas, to present brief explanations of the
important ideas and techniques, and to review the forty or fifty most important Al systems.

The Handbook contains several different types of articles. Key Al ideas and techniques
are described In core articles (e.g., basic concepts In heuristic search, semantic nets).
Important Individual Al programs (e.g., SHRDLU, MYCIN) are described In separate articles
that indicate, among other things, the designer's goal, the techniques employed, and the
reasons why the program is important. Overview articles discuss the problems and
approaches In each major area. The overview articles should be particularly useful to those
who seek a summary of the underlying Issues that motivate Al research.
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Eventually the Handbook will contain approximately two hundred articles. We hope that
the appearance of this material will stimulate Interaction and cooperation with other Al
research sites. We look forward to being advised of errors of omission and commission. For a
field as fast moving as Al, It i Important that its practitioners alert us to Important
developments, so that future editions will reflect this new material. We intend that the
Handbook of Artificial Intelligence be a living and changing reference work.

The articles In this edition of the Handbook were written primarily by graduate students
in Al at Stanford University, with assistance from graduate students and Al professionals at
other institutions. We wish particularly to acknowledge the help from those at Rutgers
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

This report, which contains the chapter of the Handbook on knowledge representation
research, has been edited by Avron Barr and James Davidson. Douglas Appelt, James
Bennett, Robert Filman, and Anne Gardner also contributed original material. Special thanks to
Mark Stefik for his careful review of an earlier draft of this chapter.

Avron Barr Stanford University
Edward Felgenbaum March, 1980
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A. Introduction to Knowledge Representation

Artificial Intelligence research Involves building computer systems capable of
performing tasks like talking, planning, playing chess, and analyzing molecular structure.
When we talk about people who do these things, we always talk about what they have to
"know" in order to do them. In other words, we describe someone's ability to behave with
intelligence in terms of his or her knowledge, Similarly, we say that a computer program knows
how to play cards, or understand spoken English, or manipulate a robot. We ascribe knowledge
to programs in the same manner that we ascribe it to each other--based on observing certain
behavior; we say that a program knows about objects in its domain, about events that have
taken place, or about how to perform specific tasks.

The nature *of knowledge and intelligence has been pondered by psychologists,
philosophers, linguists, educators, and sociologists for hundreds of years. Since our research
methodology involves the design of programs that exhibit Intelligent behavior, Al researchers
have often taken a rather pragmatic approach to the subject of knowledge, focusing on
improving the behavior of their programs. In Al, a representation of knowledge is a combination
of data structures and interpretive procedures that, if used in the right way in a program, will
lead to "knowledgeable" behavior. Work on knowledge representation in At has involved the
design of several classes of data structures for storing information in computer programs,
and the development of procedures that allow "intelligent" manipulation of these data
structures to make inferences.

Keep in mind that a data structure is not "knowledge," any more than an encyclopedia
is knowledge. We can say, metaphorically, that a book is a source of knowledge; but without
a reader, the book is just ink on paper. Similarly we often talk of the "list" and "pointer"
data structures in an Al database as knowledge per se, when we really mean that they
represent facts or rules when used by a certain program to behave in a knowledgeable way.
(This point Is expanded in article C5).

Techniques and theories about knowledge representation have undergone rapid changeii and development in the last five years. The articles in this chapter try to give a general
review of the different representation schemes that researchers have thought up, what they
can do well and what they cannot do. Our understanding of these matters Is still incomplete;
knowledge representation is the most active area of Al research at the present time.

This introductory article should help guide the reader's understanding of the various
formalisms described in the articles in this chapter. After a brief discussion of the kinds of
"knowledge" that needs to be represented in Al systems, we Introduce some Issues that will
serve as a vocabulary for talking about and comparing different representation methods--
terms like scope, understandability, and modularity. The second article in the chapter Is a
brief survey of the most important representation formalisms, intended to give an overview of
the kinds of systems we are talking about. The remaining articles describe, in more detail,
the mechanics of the various representation schemes, their development, and some of the
current research problems.

Ill



2 Representation of Knowledge

Knowle.dge

What kinds of knowledge are needed to behave knowledgeably? What things do we
know "about"? To approach these questions, consider the following list of types of
knowledge that might need to be represented in Al systems:

Objects: Typically, we think of knowledge in terms of "facts about" objects in
the world around us. Birds have wings. Robins are birds. Snow is white. So, of course,
there should be some way to represent objects, classes or categories of objects,
and descriptions of objects.

Events: We also know about actions and events in the world. Bob kissed Mary
behind the barn. The sky will fall tomorrow. In addition to a representation for the
events themselves, a representation formalism may need to indicate time course
of a sequence of events, and their cause-and-effect relationships.

Performance: A behavior like riding a bicycle involves knowledge beyond that of
objects and events, knowledge about how to do things, the performance of skills.
Like bike-riding, most cognitive behaviors, e.g., composing sentences and proving
theorems, involve performance knowledge, and It is often hard to draw the line
between performance- and object-knowledge. (Beware: pushing too hard on this
point leads right back to the fundamental philosophical issue of what knowledge
is!)

Meta-knowledge: We also use knowledge about what we know, called meta-
knowledge. For example, we often know about the extent of our knowledge about
a particular subject, about reliability of certain Information, or about the
Importance or acquisition history of specific facts about the world. Meta-
knowledge also includes what we know about our own performance as cognitive
processors: our strengths, weaknesses, confusability, levels of expertise in
different domains, and feelings of progress during problem solving. For example,
Bobrow (1975) describes a robot who is planning a trip; its knowledge that it can
read the street signs to find out where it Is along the way illustrates meta-
knowledge.

The questions of whether these kinds of knowledge are distinguishable or whether
there are other varieties of knowledge are interesting psychological Issues. For now,
however, we will Ignore the psychological aspects of the problem of knowledge. In this
article we will discuss some of the features of the Al knowledge representation schemes
that make It possible, sometimes, for computer programs to exhibit behaviors Indicating these
four different types of knowledge.

Using Knowledge

The most important consideration in examining and comparing knowledge representation
schemes is the eventual use of the knowledge. The goals of Al systems can be described in
terms of cognitive tasks like recognizing objects, answering questions, and manipulating
robotic devices. But the actual use of the knowledge in these programs involves three
stages: acquiring more knowledge, retrieving facts relevant to the problem at haind, and
reasoning about these facts In search of a solution.

Z771



A Introduction to Knowledge Representation 3

Acquisition. We usually think of learning as the accumulation of knowledge, but it
Involves more than the addition of new facts to our brains. Indeed, knowledge acquisition
involves relating something new to what we already know in a psychologically complex and
still mysterious way. Al systems often classify a new data structure before it is added to the
database, so that it later can be retrieved when it is relevant. Also, in many kinds of
systems, new structures can interact with old, sometimes interfering with tasks that had
previously been performed properly. Finally, some representation schemes are concerned
with acquiring knowledge in a form that is natural to humans, who serve as the source of new
knowledge (see article Applications.B). If these integrative processes do not occur during
acquisition, the system would accumulate new facts or data structures without really
improving its knowledgeable behavior.

Retrieval. Determining what knowledge is relevant to a given problem becomes crucial
when the system "knows" many different things. Humans are Incredibly proficient at this
task, and most representation schemes that have been directly concerned with this issue
have been based on ideas about human memory (see article C3 on semantic nets, C7 on
frames, and the Information Processing Psychology chapter on the use of Al methods in
building psychological models). The fundamental ideas about retrieval that have been
developed in Al might be termed linking and grouping: if you know that one data structure is
going to entail another in an expected reasoning task, put in an explicit link between the
two; and if several data structures are typically going to be used together, group them into a
larger structure.

Reasoning. When the system is required to do something that it has not been told
explicitly how to do, it must reason, i.e., it must "figure out" what it needs to know from what
it already knows. For instance, suppose an information retrieval program "knows" only that
Robins are birds and that All birds have wings. Keep in mind that all that it means for a system
to "know" these facts is that there are data structures and procedures which would allow it
to answer the questions:

Are Robins birds? Yes
Do all birds have wings? Yes

If we then ask it, Do robins have wings?, tho program must "reason" to answer the query. In
problems of any complexity, this ability becomes increasingly important. The system must be
able to deduce and verify a multitude of new facts beyond those it has been told explicitly.

For a given knowledge representation scheme, we must ask "What Kind of reasoning is
possible, easy, natural, etc., in this formalism?" There are many ditferent kinds of reasoning
one might imagine:

Formal reasoning involves the syntactic manipulation of data structures to
deduce new ones following prespecified rules of inference. Mathematical logic is
the archetypical formal representation (see article Cl).

Procedural reasoning uses simulation to answer questions and solve problems.
When we use a program to answer What is the sum of 3 and 4?, it uses. or "runs,"

a procedural model of arithmetic (article C2).

Analogical reasoning seems to be a very natural mode of thought for humans,
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4 Representation of Knowledge

but, so far, difficult to accomplish in Al programs. The idea is that when you ask a
question Can robins fly? the system might reason that "Robins are like sparrows,
and I know that sparrows can fly, so robins probably can fly." (See article
Problem Solving.C2 for a review of Al attempts to achieve this kind of reasoning.)

Generalization and Abstraction are also natural reasoning processes for humans
that are difficult to pin down well enough to implement in a program. If you know
that Robins have wings, that Sparrows have wings, and that Bluejays have wings,
eventually you will believe that All birds have wings. This capability may be at the
core of most human learning, but it has not yet become a useful technique In Al
(however, see the Learning and Information Processing Psychology chapters for
current research.)

Meta-level reasoning is demonstrated by how one answers the question What is
Paul Newman's telephone number? You might reason that "If I knew Paul Newman's
number, I would know that I knew it, because it is a notable fact." This involves
using "knowledge about what you know," in particular about the extent of your
knowledge and about the importance of certain facts. Recent research in
psychology and Al indicates that meta-level reasoning may play a central role in
human cognitive processing (Gentner and Collins, 1980; Flavell, 1979); some work
on Implementing this kind of inference mechanism in Al systems has begun (Davis,
1980; Bobrow and Winograd, 1977a; Brachman, 1978).

Two things need to be said about the uses of knowledge described here. First, they
are interrelated: when acquiring new knowledge, the system must be concerned with how that
knowledge will be retrieved and used later in reasoning. Second, when you get right down to
It, efficacy Is the primary consideration for knowledge-based Al systems. Although there is
serious concern among Al researchers about the psychological validity of the various
representation scli,. s, we are not yet In a position to prove that one scheme captures
some aspect of human memory better than another. There is no theory of knowledge
representation. We don't yet know why some schemes are good for certain tasks and not
others. But each scheme has been successfully used in a variety of programs that do
exhibit intelligent behavior.

We will now discuss some of the characteristics of representation schemes that have
been used to describe and compare different formalisms.

Scope and Grain Size

What portion of the external world can be represented in a system? In what detail are
objects and events represented? And how much of this detail is actually needed by the
reasoning mechanisms? Questions like these, concerning the scope and grain size of a
representation scheme, can help determine the suitability of a given formalism for the
solution of a particular problem, but they are not easy to answer.

For one thing, of course, the answers depend totally on the particular application
intended. A knowledge representation based on l~gic, for instance, might be an extremely
fine grain representation In a mathematical reasoning program, but might result In a coarse
simplification for a vision program. Exactly how much detail is needed depends, on the

f -- • o >s".



A Introduction to Knowledge Representation 5

performance desired (see McCarthy and Hayes, 1969). In general, uniformity of detail
across the objects and events seems desirable for a given reasoning task (Bobrow, 1975).

Also important in this discussion is the choice of semantic primitives, the basic
vocabulary used to describe objects and events in the problem domain. For any given
formalism--logic, semantic net, procedures, etc.--the choice of the primitive attributes of the
domain that are used to build up facts in the database strongly affects the expressive
power of the knowledge representation scheme. (This point Is discussed thoroughly in article
CS).

If one asks, "Can everything that the system must know be represented in the
formalism?", the answer is almost always, "Yes, but some things are more easily represented
than others." Getting a feeling for what it means "to be represented more easily"--which
involves the representation, the domain, and the reasoning strategies--is, at present, part of
the art of doing Al research; there is no formal metric for the appropriateness of a formalism
along these lines. Bobrow (1975) refers to the process of mapping the objects and events
in the world into some internal encoding; then one can ask if the mapping in a given situation
is "easy," "natural," "psychologically valid," etc.

Modularity and Understandability

If one thinks of the data structures in a program as "pieces of knowledge," then adding
new data structures is like adding knowledge to the system. One characteristic that is often
used to compare representation schemes Is modularity, which refers to the ability to add,
modify, or delete individual data structures more-or-less independent of the remainder of the
database, i.e., with clearly circumscribed effects on what the system "knows."

In general, humans find modular or "decomposable" systems easier to understand and
work with (Simon, 1969). To illustrate the kind of difficulty encountered in non-modular
systems, consider the complicated interdependence of procedures in a large computer
program, like an operating system. The following situation will be familiar to readers who
have helped to write and maintain large programs: A large system Is composed of many
procedures that "call" each other in a complex way that becomes increasingly hard to follow
as the system grows. Often modification of Procedure X, so that it will work properly when
called by Procedure A, interferes with the proper functioning of X when it is called by
Procedure B. In other words, in order to successfully modify a large system, the programmer
must understand the interactions of all of its pieces, which can become an impossibly difficult
task.

In general terms, the problem with non-modular systems Is that the "mean!ng" of data
structures in the knowledge base depends on the context in which the knowledge is being
used. (Procedures are the data structures in procedural representations, which are notoriously
non-modular.) Context dependence, in turn, dramatically affects the modifiability of the
knowledge base; modification is mluch easier if the "meaning" of a fact can be known when
the fact is entered or removed.

On the other hand, some human knowledge just doesn't seem very modular and is very
* difficult for people to express as independent rules or facts. Winograd (1974) generalizes

that In modular systems the facts are easy to recognize but the reasoning process may be



6 Representation of Knowledge

quite opaque, and the opposite is often true in procedural representations. The degree to
which the system is understandable by humans is important In several phases of its
development and performance: design and implementation, acquisition of knowledge from
human experts, performance of the task, and interaction with and explanations for the
eventual user.

In some representation schemes the data structures (e.g, production rules, logic
formulae) seem less inherently intertwined, but the control of the interaction of the various
database entries is a very Important characteristic of all representation schemes. Winograd
(1975) suggests that no system is completely modular--in all systems there is some degree
of Interaction between the data structures that form the knowledge base--but some
formalisms are more Inherently modular than others.

Explicit Knowledge and Flexibility

Another issue to keep In mind when examining various representation schemes is what
part of the system's knowledge is explicit. By this we mean to what knowledge do the
programmer and the system have direct, manipulatory access, and what knowledge is "built-
in." For example, an operating system has an explicit representation of its "priority queues,"
but its full knowledge about scheduling jobs (deciding which of several users to serve first)
Is typically hidden deep in voluminous code. The knowledge Is there, of course, since the
system behaves in a knowledgeable way, but it is implicit in the system's program. If on the
other hand, the operating system were designed as a production system, for example, which
used a list of "priority rules" to decide what kind of jobs to run first, the scheduling
knowledge would then be more explicit.

One particular advantage of explicit representation schemes is that, because the facts
are in a form that allows a global interpretation, the same fact can be used for multiple
purposes. In some large systems this feature has been a significant advantage. For
example, in MYCIN (article Medical Application.C1), the production rules that form the
system's knowledge about how to diagnose the possible causes of infectious diseases are
used not only by the diagnosis module itself, but also by the routines that explain the
diagnosis module's reasoning to the consulting physician and that acquire new rules from
expert physicians (Davis and Buchanan, 1977).

Declarative vs. Procedural Representations

On a closely related subject, the dispute about the relative merits of declarative vs.
procedural knowledge representations is a historically important battle from which much of
current representation theory was painfully developed (Winograd, 1975). Many of the
Issues discussed In this article were identified during the declarative/procedural debate.
The declarative systems were typified by resolution-based theorem provers (see article Cl on
logic and the chapter on Theorem Proving), and the procedural systems by Winograd's
PLANNER-based SHRDLU (article Natural Lenguage.F4). The Declarativists talked about the
flexibility and economy of their representation schemes, their completeness and the certainty of
the deductions, and about the ease of modifiability of the systems. The Proceduralists
stressed the directness of the line of inference (using domain-specific heuristics to avoid using
irrelevant knowledge and following unnatural lines of reasoning) and the ease of coding and
understandability of the reasoning process itself.

---.-------.-
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Although In retrospect these positions seem somewhat arbitrarily chosen over the
space of possible features of representation schemes, the declarative/procedural battle
was an Important one in Al. It dissolved, rather than resolved, and the result was a much
greater respect for the Importance of knowledge representation In current Al work.

Final Remarks

This article has not been about representation formalisms per se, but rather about the
pragmatics of epistemology, the study of the nature of knowledge. The intention has been to
lay the groundwork for an appreciation of the problems inherent in representing knowledge in
Al programs. The discussion may also guide a critical comparison of the representation
methods described in the articles to follow.

There are many open questions, indeed serious problems, In knowledge representation
research. For example, quantification, the ability to specify properties of arbitrarily defined
sets, is an area of active theoretical research. Other current problems include how to
represent people's beliefs (which may or may not be true), mass nouns, degrees of certainty,
time and tense information, and processes that consist of sequenced actions taking place
over time.

The article which follows immediately is a quick overview of the knowledge
representation schemes used in Al. Articles Cl-C7 go into substantial detail about individual
representation schemes, discussing their development, their technical features, their use in
Al systems, and their shortcomings.

References

The best recent review of knowledge representation research in Al is Winograd
(1980b). Earlier excellent discussions include the papers in (Bobrow and Collins, 1975),
especially Bobrow (1978) and Winograd (1975). Other recent general discussions of
knowledge representation include Boden (1977) and the papers in Findler (1979). Brachman
and Smith (1980) report on a survey of knowledge representation researchers, showing the
wide diversity of goals and approaches among workers in the field.
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8 Representation of Knowledge

B. Survey of Representation Techniques

As stated In the preceding article, Al research deals in experimental epistemology; in
order to create programs that exhibit intelligent behavior, researchers in Al develop schemes
for Incorporating "knowledge about the world" in their programs. These representation schemes
involve routines for manipulating specialized data structures to make intelligent inferences.
Although some aspects of each knowledge representation technique are incidental and will
seem unmotivated, in its way each scheme touches on concerns central to the study of
cognition and intelligence.

This survey article presents sketches of the representation schemes that have been
used in Al programs that play chess, converse in English, operate robots, etc. Hopefully,
seeing simple examples of the major techniques will help the reader get a clearer idea of
what a knowledge representation is. Most of this research assumes that what needs to be
represented Is known, a priori; the Al researcher's job is just figuring out how to encode the
information in the system's data structures and procedures.

State-Space Search

Perhaps the earliest representation formalism used extensively in Al programs was the
state-space representation, developed for problem-solving and game-playing programs. The
search space is not a representation of knowledge, per se: what it represents is the
structure of a problem in terms of the alternatives available at each possible state of the
problem, for example the alternative moves available on each turn of a game. The basic idea
is that from a given state in a problem, all possible next states can be determined using a
small set of rules, called transition operators (or legal move generators In game playing programs).
For example, in a chess game, the original state is the board position at the beginning of the
game. The legal move generators correspond to the rules for moving each piece. So, all of
the next states of the game (i.e., the board configurations after each of White's possible
first moves) can be generated by applying the move generators to the original positions of
the pieces. Similarly, all of the possible states after Black's first response can be
generated.

One rather straightforward way to find the winning move is to try all of the alternative
moves, then try all of the opponents responses to these moves, then all of the possible
responses to those, until all of the possible continuations of the game have been exhausted
and it is clear which was optimal. The problem with this solution is that, for interesting
problems like chess, there are far too many possible combinations of moves to try in a
reasonable amount of time on a machine of conceivable computational power. This problem,
called the combinatorial explosion, is an important general difficulty for Al systems in all
domains (see the Search chapter).

The solution adopted in Al research is to limit the number of alternatives searched at
each stage of the look-ahead process to the best possibilities. And in order to determine
which alternatives are best, programs must reason using large amounts knowledge about the
world. Whatever domain the systems deal with, chess or organic chemistry or pizza parlor
scenarios, the goal of research in knowledge representation is to enable Al programs to
behave like they know something about the problems they solve.

-- t



B Survey of Representation Techniques 9

Logic

The classical approach to representing the knowledge about the world contained in
sentences like

All birds have wings

is the predicate calculus, developed by philosophers and mathematicians as a formalization of
the process of making inferences from facts. The example about birds' wings would be
translated into the mathematical formula

V x. Bird (x) : HasWings (x)

which reads, For any object, x, in the world, if x is a bird, then x has wings. The advantage of
using a formal representation is that there is a set of rules associated with the predicate
calculus, called the rules of inference, by which facts that are known to be true can be used
to derive other facts which must also be true. Furthermore, the truth of any new statement
can be checked, in a well specified manner, against the facts that are already known to be
true.

For example, suppose we add another fact to our database

V x. Robin (x) : Bird (x)

which reads, For any object, x, in the world, if x is a Robin, then x is a Bird. Then from these two
facts, we can conclude, using the rules of Inference, that the following fact must be true:

V x. Robin (x) HasWings (x)

i.e., that All robins have wings. Note that there is a specific rule of inference that allows this
deduction based on the superficial structure, or syntax, of the first two formulae, independent
of whether they dealt with birds or battleships, and that new facts derived through
application of the rules of inference are always true so long as the original facts were true.

The most important feature of the predicate calculus and related formal systems are
that deductions are "guaranteed correct" to an extent that other representation schemes
have not yet reached. The semantic entailment of a set of logic statements (i.e., the set of
Inferences or conclusions that can be drawn from those statements) is completely specified
by the rules of inference. Theoretically, the database can be kept logically consistent and
all conclusions can be guaranteed correct. Other representation schemes are still striving
for such a definition and guarantee of logical consistency.

One reason that logic-based representations have been so popular In Al research Is
that the derivation of new facts from old can be mechanized. Using automated versions of
theorem proving techniques, programs have been written to to automatically determine the
validity of a new statement in a logic database by attempting to prove it from the existing
statements (see the Theorem Proving chapter). Although mechanistic theorem provers of
this sort have been used with some success In programs with relatively small databases
(Green, 1969), when the number of facts becomes large there is a combinatorial explosion in
the possibilities of which rules to apply to which facts at each step of the proof. More

-4- - - -- ,
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knowledge about what facts are relevant to what situations is needed, and, again,
incorporating additional knowledge is the goal of continuing work in representation theory.

Procedural Representation

The Idea of procedural representation of knowledge first appeared as an attempt to
encode some explicit control of the theorem-proving process within a logic-based system.
(This refers to research on the PLANNER programming language, article Al Programming
Langages.C2). In a procedural representation, knowledge about the world is contained in
procedures, small programs that know how to do specific things, how to proceed in well-
specified situations. For instance, in a parser for a natural language understanding system,
the knowledge that a noun phrase may contain articles, adjectives, and nouns is represented
In the program by calls (within the NP procedure) to routines that know how to process
articles, nouns, and adjectives.

The underlying knowledge, the permissible grammar for a noun phrase in our example, is
not stated explicitly, and thus is not typically extractable In a form that humans can easily
understand. The consequent difficulty that humans have in verifying and changing
procedural representations is the major flaw of these systems. Nevertheless, all Al systems
use a procedural representation at some level of their operation, and general consensus
gives a legitimate role for procedural representation in Al programs (Winograd, 1976). The
advantages and disadvantages of procedural knowledge representation are discussed fully
in article C2. Recent work has emphasized Procedural attachment in frame-based systems
(article C7).

Semantic Nets

The semantic net, developed by Quillian (1968) and others, was invented as an
explicitly psychological model of human associative memory. A net consists of nodes
representing objects, concepts and events, and links between the nodes, representing their
Interrelations. Consider, for example, the simple net:

BIRD

has-part

WIGS

where BIRD and WINGS are nodes representing sets or concepts, and HAS-PART Is the name
of the link specifying their relationship. Among the many possible Interpretations of this net
fragment is the statement

All birds have wings.

As illustrated earlier, statements of this sort also have a natural representation in logic-
based representation systems. One key feature of the semantic net representation is that
important associations can be made explicitly and succinctly: relevant facts about an object
or concept can be inferred from the nodes to which they are directly linked, without a search
through a large database.
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The ability to point directly to relevant facts is particularly salient with respect to ISA
and SUBSET links, which establish an property inheritance hierarchy in the net. For example,
the net segment

BIRD

3ubs3 I 1has-part

ROBILSsust WINGS

might be interpreted to mean that since robins are birds, and birds have wings, then robins
have wings. The interpretation (semantics) of net structures, however, depends solely on
the program that manipulates them; there are no conventions about their meaning. Therefore,
inferences drawn by manipulation of the net are not assuredly valid, in the sense they are
assured to be valid in a logic-based representation scheme.

Production Systems

Production systems, developed by Newell and Simon (1972) for their models of human
cognition (see Information Processing Psychology), are a modular knowledge representation
scheme that is finding increasing popularity in large Al programs. The basic idea of these
systems is that the database consists of rules, called productions, in the form of
condition/action pairs: "If this condition occurs, then do this action." For example,

IF stoplight is red AND you have stopped THEN right turn OK.

The utility of the formalism comes from the facts that the conditions in which each rule is
applicable are made explicit, and that, in theory at least, the interactions between rules are
minimized (one rule doesn't "call" another).

Production systems have been found useful as a mechanism for controlling the
interaction between statements of declarative and procedural knowledge. Because they
facilitate human understanding and modification of systems with large amounts of knowledge,
productions have been used in several recent large applications systems like DENDRAL,
MYCIN, PROSPECTOR, and AM (see Science end Math Applications). Current work on

* production systems has emphasized the control aspects of the formalism and the ability to
develop self-modifying (learning) systems.

Special Purpose Representation Techniques

Some of the domains that Al researchers work in seem to suggest natural
representations for the knowledge required to solve problems. For example, a visual scene
from a robot's camera Is often encoded as an array representing a grid over the scene: the
values of the elements of the array represent the average brightness over the
corresponding area of the scene (see Vision). This direct representation Is useful for sorre
tasks, like finding the boundaries of the objects in the scene, but Is clumsy for other tasks,
like counting the number of objects. In the letter case a list, each element of which
represents one object indicating its location, orientation and size, might be a more useful
representation. (See the discussion in Bobrow, 1076).
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This example illustrates a very important principle to realize when comparing
representation techniques. In some sense, these two (and all other) knowledge
representation methods are interchangeable: If we know one representation In enough detail,
we could for the most part construct the other one. It is the intended use of the knowledge
about the scene that recommends one representation scheme over another. In a big Al
system, like the speech understanding programs, multiple representations of the same
information may be used simultaneously for different purposes.

Other special purpose representation schemes of particular interest are those used in
the early natural language understanding programs, like SAD-SAM and SIR (see article Natural
Lmenguage.F1), and the discrimination net used in the EPAM program (article Inforntion
Processing Psychology.B2).

Semantic Primitives

A general problem in knowledge representation schemes, first confronted in semantic-
net-based systems, is that there are generally many possible representations in the net for
a single fact or event. For instance, the fact that robins have wings could be represented
by the example net discussed above. All robins are birds, All birds have wings, or more simply by
linking the WINGS node directly to the ROBINS:

BIRD ROBINS

Iust 1has-par t .1has-part
WINGS WGROBI NS

This Inherent ambiguity Is a general problem in network construction, and the programs that
manipulate the net to make deductions must be able to handle alternative structures.
Although this feature might be used to great advantage, allowing redundant storage of
Information with an eye to future relevance, for example, the representational ambiguity
generally causes confusion and expense, since the system doesn't know what exactly to
look for when it comes time to retrieve a given fact.

One particular task where the problem of non-specificity of representation was critical
was the paraphrase task popular In natural language research. Problems encountered In
trying to build programs that could rephrase an input sentence, or check whether two
sentences have the same "meaning," or translate a sentence from one language into another
led researchers like Norman and Rumelhart (1975), Schank and Abelson (1977), and Wilks
(1977b) to use canonical internal representations based on semantic primitives, fundamental
concepts from which all others are built. Thus all representation structures are built from the
set of primitives in such a way that two structures that mean the same thing reduce to the
same network of primitive nodes. The selection of primitive elements for the expression of
knowledge in a given domain Is a basic problem in all representation schemes, whether the
primitives are represented as nodes In a net, predicates in logic formulae, or slots in a frame.
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Frames

The most recently developed Al knowledge representation scheme is the frame, still In
Its early development stage. Researchers have different Ideas about what exactly a frame
is, but basically, a frame Is a data structure that includes declarative and procedural
Information in predefined Internal relations. Thus a generic frame for a dog might have
knowledge hooks, or ilots for facts that are typically known about dogs, like the BREED,
OWNER. NAME, and an "attached procedure" for finding out who the owner Is If that is not
known. In the frame-like language KRL (Bobrow and Winograd, 1977a), a dog-frame might
look like this:

Generic DOG Frame

Self: an ANIMAL; a PET
Breed:
Owner: a PERSON

(If-Needed: find a PERSON with petamyself)
Name: a PROPER NAME (DEFAULTuRover)

DOG-NEXT-DOOR Frame

Self: a DOG
Breed: mutt
Owner: Jimmy
Name: Fido

The semantics of this example, as well as the Ideas being developed in frame-based
formalisms are discussed in article C7.

An interesting, much discussed feature of frame-based processing is a frame's ability
to determine whether it is applicable in a given situation. The Idea is that a likely frame is
selected to aid in the process of understanding the current situation (dialogue, scene,
problem) and this frame in turn tries to "match" itself to the data it discovers. If it finds that
it is not applicable, it could transfer control to a more appropriate frame (Minsky, 1975).
Although many issues about the possible Implementations of frame-based systems are
unresolved, and others may not have surfaced yet, the basic idea of frame-like structuring of
knowledge seems promising.

Conclusion

This brief summary of knowledge representation indicates the variety of techniques
being used in Al projects. The remaining articles in this Chapter go into most of these
schemes in greater detail. Many researchers feel that the representation of knowledge is
the key issue at this pbint in the development of Al. Knowledge representation is also oi3
area where Al and cognitive psychology share fundamental concerns, for the brainis
operation is sometimes best described in terms of one representation formalism, sometimes
by another, and sometimes not very well by any we have thought up. The interested reader
should peruse the chapter on Information Processing Psychology.

4jq
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C. Representation Schemes

C1. Logic
Philosophers have been grappling with the nature of reasoning and knowledge since the time
of the ancient Greeks. This tradition, formalized In the last half of the nineteenth century
with the work of Boole, Frege, and Russell, and expanded and amplified In the current
century by philosophers such as Qulne, Carnap, and Tarski, is an important part of western
intellectual history and has developed into the philosophical and mathematical study of logic.

This article is about logic, about how the formal treatment of knowledge and thought, as
developed In philosophy, has been applied to the development of computer programs that can
reason. The first two sections of the article, dealing with the propositional and predicate
calculi, are an introduction to formal logic. This particular introduction has been written with
the Artificial Intelligence applications of logic in mind. It is followed by an illustration of the
way that a simple problem, the famous Tower of Hanoi puzzle, might be formalized in the
predicate calculus. Then, after a survey of some of the important Al systems that have used
logic for a representation, we discuss the advantages and problems of this representational
formalism in Al.

The Propositional Calculus

Logic, one of the first representation schemes used In Al, has two important and
interlocking branches. The first is consideration of what can be said; what relationships and
implications one can formalize, the axioms of a system. The second is the deductive
structure, the rules of inference that determine what can be inferred if certain axioms are
taken to be true. Logic is quite literally a formal endeavor: it is concerned with the form, or
syntax, of statements and with the determination of truth by syntactic manipulation of formulae.
The expressive power of a logic-based representational system results from building. One
starts with a simple notion, like truth and falsehood, and, by inclusion of additional notions,
like conjunction and predication, develops a more expressive logic--one in which more subtle
ideas can be represented.

The most fundamental notion in logic is that of truth. A properly formed statement or
proposition has one of two different possible truth values. TRUE or FALSE. Typical propositions
are "Bob's car is blue," "Seven plus six equals twelve," and "John Is Mary's uncle." Note
that each of the quoted sentences is a proposition, not to be broken down into its
constituent parts. Thus, we could assign truth value TRUE to the proposition "John is Mary's
uncle," with no regard for the moaning of "John is Mary's uncle," i.e. that John is the brother
of one of Mary's parents. Propositions are those things which we can call true or false.
Terms such as "Mary's uncle" and "seven plus four" would not be propositions, as we cannot
assign a truth value to them.

Pure, disjoint propositions aren't very Interesting. Many more of the things we say and
think about can be represented in propositions which use sentential connectives to comb .,-se
simple propositions. There are five commonly employed connectives:
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And A or &'

Or v
Not "
Implies D or -
Equivalent M

The use of the sentential connectives in the syntax of propositions brings us to the simplest
logic, the propositional calculus, In which we can express statements like The book is on the
table or it is on the chair, and If Socrates is a man, then he is mortal. In fact, the meanings of the
sentential connectives are intended to keep their natural Interpretations, so that if X and Y
are any two propositions,

XAis TRUE if X is TRUE and Y is TRUE; otherwise XAY is FALSE.

XvN1s TRUE if either X is TRUE or Y is TRUE or both.

-,X is TRUE if X Is FALSE, and FALSE if X is TRUE.

XYvts meant to be the propositional calculus rendition of the notion, If we
assume that X is true, then Y must be so, i.e. the truth of X implies that Y is
true. We use this concept in everyday speech with statements like If
Jenny is nine months old, then she can't do calculus. The truth value of X-Y Is
defined to be TRUE if Y is TRUE\or X is FALSE.

XwYis TRUE if both X and Y are TRUE, or both X and Y are FALSE; XaY is FALSE
if X and Y have different truth values.

The following table, a compressed truth table summarizes these definitions.

X Y I XAY XvY X'Y -X xRY

T TI T T T F T
T Ft F T F F F
F TI F T T T F
F F I F F T T T

From syntactic combinations of variables and connectives, we can build sentences of
propositional logic, just like the expressions of mathematics. Parentheses are used here Just
as in ordinary algebra. Typical sentences are:

(X (Y^Z) )2((X.2Y) (Y2Z) ) (1)

-,(XvY)B-,(-YA-X) (2)

(XAY)v(-YAZ) (3)

Sentence (1) Is a tautologVy It states "Saying X Implies Y and Z Is the same as saying that X
Implies Y and X Implies Z." This is a tautology because it is true no matter what propositions
are substituted for the sentntial constants X, Y, and Z. Sentence (2) is a fallacy or
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contradiction. No matter what assignment of values Is used, the sentence is always false.
(It states "Saying X or Y Is false Is the same as saying that 'X Is false and Y is false' is
false.") Sentence (3) Is neither a tautology or a fallacy. Its truth value depends on what
propositions are substituted for X, Y, and Z.

In the propositional calculus, we also encounter the first rules of inference. An inference
rule allows the deduction of a new sentence from previously given sentences. The power of
logic lies in the fact that the new sentence is assured to be true if the original sentences
were true. The most well known inference rule is modus ponens. It states that if we know
that two sentences of the form X and X:Y are true, then we can infer that the sentence Y is
true. For example, If we know that the sentence John is an uncle is true and we also know
that If John is an uncle then John is male Is true, then we can conclude that John is male is
true. More formally, the modus ponens rule would be expressed as:

! (XA(X:ZY)) 3 Y

Note that If we think of X and XnY as two entries in a database, the modus ponens rule allows
us to replace them with the single statement, Y, thus eliminating one occurrence of the
connective "". In what are called natural deduction systems of logic, there are typically two
rules of inference for each connective, one that introduces it into expressions and one that
eliminates it. Modus ponens Is therefore called the '-elimination rule.

The Predicate Calculus

For the purposes of Al, propositional logic is not very useful. In order to adequately
capture in a formalism our knowledge of the world, we not only need to be able to express
true or false propositions, but we must also be able to speak of objects, to postulate
relationships between these objects, and to generalize these relationships over classes of
objects. We turn to the predicate calculus to accomplish these objectives.

-'"1 The predicate calculus is an extension of the notions of the propositional calculus. The
meanings of the connectives (A, v, n, -, and a) are retained, but the focus of the logic is
changed. Instead of looking at sentences that are of interest merely for their truth value,
predicate calculus Is used to represent statements about specific objects, or individuals.
Examples of Individuals are you, this sheet of paper, the number 1, the queen of hearts, Socrates,
and that coke can.

Predicates. Statements about individuals, both by themselves and in relation to other
Individuals, are called predicates. A predicate Is applied to a specific number of arguments,
and has a value of either TRUE or FALSE when Individuals are used as the arguments. An
example of a predicate of one argument Is the predicate is-red. Of the individuals mentioned
In the previous paragraph, the predicate is-red has the value TRUE when applied to the
individuals the queen of hearts and that coke can, and FALSE when the Individual this paber Is
used as the argument. Other examples of predicates are less-that-zero, Greek, mortal, and
made-of-paper.

Predicates can have more than one argument. An example of a two-place predicate
from mathematics Is is -greater-than, e.g., Is-greater-than (7,4). Physical objects could be
compared by the two-place predicate Is-lighter-than. A three-place predicate from geometry

42
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might be Pythagorean, which takes three line-segments as arguments and would be TRUE
whenever two were the sides of a right triangle with the third as its hypotenuse. One very
Important two place predicate is equals.

Each one-place predicate defines what is called a set or sort. That is, for any one place
predicate, P, all Individuals X can be sorted into two disjoint groups, those objects that
satisfy P (for which P(X) Is TRUE) forming one group, and those that don't satisfy P In the
other. Some sorts Include other sorts; all men are animals, all knaves are playing-cards.

Quantifiers. We shall often have occasion to refer to facts that we know to be true of
all or some of the members of a sort. For this, we Introduce two new notions, those of
variable and quantifier. A variable Is a place holder, one that Is to be filled in by some
constant, as X has been used in this article. There are two quantifiers, V, meaning For all....
and 3, meaning There exists.... The English language sentence "All men are mortal" is thus
expressed in predicate calculus using the variable X as

VX. Man(X) Mortal(X),

which Is loosely rendered "For all individuals, X, if X is a man (i.e., Man(X) is true) then X is
mortal." The English sentence "There is a playing card that is red and is a knave" becomes
the predicate calculus statement

3X. Playing-card(X) A Knave(X) A Is-red(X) .

More complicated expressions or well-formed formulae (WFFs) are created with syntactically
allowed combinations of the connectives, predicates, constants, Variables, and quantifiers.

Inference rules for quantifiers. In a typical natural deduction system, use of the
quantifiers implies the introduction of four more inference rules, one for the introduction and
elimination of each of the two quantifiers. For example, the V-elimination, or universal
specialization, rule states that, for any well-formed expression o, that mentions a variable X,
if we have

V X. *e(X)

we can conclude

(A)

for any Individual A. In other words, If we know, for example,

V X. Man(X) 3 Mortal(X)

we can apply this to the Individual Socrates, using the V-elimination rule, to get.

Man(Socrates) n Mortal(Socrates).

The rules of the propositional calculus, extended by predicates, quantification, and the
Inference rules for quantifiers, result In the predicate calculus.
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First-order logic. Predicate calculus, as we've described it, is very general, and often
quite clumsy. Two other additions to the logic will make some things easier to say, without
really extending the range of what can be expressed. The first of these is the the notion of
operators, or functions. Functions, like predicates, have a fixed number of arguments; but
functions are different from predicates in that they dc not just have the values TRUE or
FALSE, but they "return" objects related to their arguments. For example, the function uncle-
of when applied to the individual Mary would return the value John. Other examples of
functions are absolute-value, plus, and left-arm-of. Each of the arguments of a function can be
either a variable, a constant, or a function (with its arguments). Functions can, of course, be
combined; we can speak of the father-of (father-of (John)), who would, of course, be John's
paternal grandfather.

The second important addition is that of the predicate equals. Two individuals X and Y
are equal if and only if they are indistinguishable under all predicates and functions. More
formally, X=Y if and only if, for all predicates P, P(X)-P(Y), and also for all functions F,
F(X)=F(Y). What we arrive at with these additions is no longer pure predicate calculus; it is
a variety of first-order logic. (A logic is of first order if it permits quantification over
individuals, but not over predicates and functions. For example, a statement like All
predicates have only one argument cannot be expressed in a first-order theory.) First-order
logic is both sound (it is impossible to prove a false statement) and complete (any true
statement has a proof). The utility of these properties in Al systems will be discussed after
we present the axiomatization of a sample problem, I.e., Its formal expression in sentences of
first-order logic.

A Sample Axiomatic System

So far we have sketched the language of logic, its parts of speech, grammar, etc. We
have not talked about how to express a problem to be solved in this language. Deciding how
to express the notions he needs is up to the user of logic, just as a programmer must
construct programs from the elements presented in the programming language manual.
However, a good programming manual ought to present sample programs; we present a
sample axiomatization of the famous Tower of Hanoi problem (see article Search.B2). One
common version of this puzzle involves three pegs, 1, 2, and 3, and three disks, A, B, and C
of graduated sizes. Initially the disks are stacked on peg 1, with A, the smallest, on top and
C, the largest, at the bottom. The problem Is to transfer the stack to peg 3, as in Figure 1,
given that (a) only one disk can be moved at a time, and It must be "free", i.e., have no other
disks on top of it, and (b) no disk may ever be placed on top of a smaller disk.

Initial State Goal State

B -- 8

Peg 1 peg?2 peg 3 pe 1 peg?2 peg 3

Figure 1. The Tower of Hanoi puzzle.

Problem expression and solution in logic has several parts We must first specify the
vocabulary of our domain; what are the variables, constants, predicates and functions.
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Secondly, we define axioms, expressions which we assert state the necessary relationships
between the objects needed to model our domain.

Obvious objects (constants) for this axiomtization are the disks, A, B, and C, and the
pegs, 1, 2, and 3; obvious predicates are the sorts DISK and PEG. DISK(A) Is TRUE, since A Is
a disk; PEG (C) is FALSE.

We need also to be able to compare disk size; for that, we have a binary predicate,
SMALLER. We define SMALLER (A,B) to be TRUE if and only If disk A is smaller than disk B. If
we have variables X, Y, and Z denoting disks, we can have our first axiom express the
transitivity of SMALLER:

V X Y Z. (SMALLER (X,Y) A SMALLER (Y,Z)) D SMALLER (X,Z)

In other words, If disk X is smaller than Y, and Y is smaller than Z, then X is smaller that Z. The
given size relationships between the disks is stated by the premise

SMALLER (A,B) A SMALLER (BC)

Note that by using the preceding two expressions, we can establish, or prove, SMALLER (A,C).

We need to be able to talk about the status of our problem solving as we work through
a solution and to be able to compare the status after a series of moves. A common strategy
to deal with this difficulty Is that of Introducing a situational constant. A situation Is a "snap
shot" of where things are at any given point. Thus, in the Tower of Hanoi problem, we might
have disk C under disk A at some point called, say, situation SIT12.

The vertical relationships of the disks and the pegs are, after all, the primary predicate
of this problem. Hence, we need a three-place predicate ON (X,Y,S), which asserts that disk
X is on disk (or peg) Y in situation S. The axiomatization of the fact that a disk is "free," I.e.,
has no other disk on it, in a situation S becomes:

V X S. FREE(X,S) a -3 Y. (ON(Y,X,S))

which is read "For all disks X and situations S, X Is free in situation S if and only if there
does not exist a disk Y such that Y Is ON X in situation S." Notice how specific and concise
the formal statement of these relationships can be.

To describe the idea that moving a disk, X, onto Y is "legal" in a given situation only if

both X and Y are free and Y is bigger, we create the predicate LEGAL:

V X Y S. LEGAL(X,Y,S) n (FREE(X,S)AFREE(Y,S)ADISK(X)ASMALLER(X,Y))

Now all we lack is a way of generating new situations. The function MOVE, defined on two
objects and a situation, produces a new situation where the first object is on top of the
second. And what does this new situation, S', look like? Well, X is on Y, and nothing else has
changed:
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V S S' X Y.
S'zNOVE(XY,S) D (ON(X,Y.S')

A V Z Z1. ((-ZmX A -ZI=Y)
(ON (Z,Z1,S),ON(Z,Z1,S')))

A V Z. (ON(X,Z,S) D FREE(ZS'))

S' will be a SITUATION if that MOVE is LEGAL:

V X Y S. LEGAL(X,Y,S) a SITUATION(MOVE(X,Y,S))

This example gives an idea of how to express In first-order logic the notions involved in
the Tower of Hanoi problem. The solution of the problem involves proving that the goal state
can be reached from the original state. More precisely, one proves a theorem which states
that, given the problem's premises expressed like the ones above, such a goal state exists.
There are very general methods for automated theorem proving In first-order logic, involving
programs which manipulate Internally stored logical expressions using rules of inference
supplied as procedures. The details of this process are discussed in the Theorem Proving
chapter. The Al systems described in the next section all use some kind of theorem prover
to make deductions based on facts expressed as logic formulae.

Applications of Logic to Artificial Intelligence

In this section we shall survey various Artificial Intelligence systems which use logic to
represent knowledge. We shall also mention the different processes they use to make
deductions, since this is an equally important aspect of the system, but we will not describe
the various alternatives in detail.

GA3 (Green, 1969) was a general-purpose question-answering system, which solved
simple problems in a number of domains. Deductions were performed using the resolution

method of inference, with simple general heuristics for control. The system could solve
problems in chemistry, robot movement, puzzles (like the Tower of Hanoi), and automatic
programming. An example from chemistry is, given the following facts (among others) about
ferrous sulfide (FeS):

FeS Is a sulfide, it is a dark-gray compound, and it is brittle,

represented as the first-order logic formula

sulfide(FeS) A compound(FeS) A darkgray(FeS) A brittle(FeS),

0A3 could then answer questions like, "is it true that no dark-gray thing Is a sulfide?" I.e.,

-, 3X. darkgray(X) A sulfide(X) ?

Despite its generality and Its success on simple problems, 0A3 could not handle really
hard problems. The fault lay In the method of deduction, resolution theorem proving, which
became impossibly slow as the number of facts it knew about a particular domain increased
beyond just a few. In Al jargon, there was a combInatorial explosion in the number of ways to

_ __ -
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combine facts to make inferences, and the resolution method of proving theorems was too
indiscriminate in which combinations it tried. Although unrestricted resolution Is complete, in
the sense that It will always return an answer if one exists, it is too indirect for non-trivial
problems. Even the use of heuristic rules to suggest which alternatives might be most
profitably followed at various points of the proof did not constrain the search sufficiently to
make QA3's approach feasible.

STRIPS (Fikes, Hart, and Nilsson, 1972), short for Stanford Research Institute Problem
Solver, was designed to solve the planning problems faced by a robot In rearranging objects
and navigating in a cluttered environment. Since the representation of the world must
include a large number of facts dealing with the position of the robot, objects, open spaces,
etc., simpler methods often used for puzzles or games would not suffice. The representation
scheme chosen for STRIPS was again the first-order predicate calculus.

A simple problem was:

Given a robot at point A, and boxes at points B, C, and D, gather the
boxes together.

The current situation is described as:

ATR (A)
AT (BOX1, B)
AT (BOX2, C)
AT (BOX3, D)

and the goal as

3X. AT(BOXlA) A AT(BOX2,X) A AT(BOX)

i.e., get all the boxes together at some place, X. Problem-solving in a robot domain such as this
Involves two types of processes: (a) deduction in a particular world model, to find out
whether a certain fact is true, and (b) searching through a space of world models, to find
one in which the given condition is satisfied (e.g., how can we get the three blocks
together?)

The former process is usually called question answering; the latter, planning. STRIPS
used different methods to solve these two types of problems. Question answering was done
via resolution theorem proving, as in Green's QA3 system; planning was performed via means-
ends analysis, as in the GPS system of Newell and Simon (1972). This dual approach allowed
world models more complex and general than in GPS, and provided more powerful search
heuristics than those found In theorem-proving programs. GPS, STRIPS, and its successor
ABSTRIPS are described in detail in the Search chapter.

FOL (Filman and Weyhrauch, 1976) is, among other things, a very flexible proof
checker for proofs stated In first-order logic. Deduction is done using the natural deduction
system of (Prawitz, 1965), which Includes the introduction and eliminaftion rules of Inference
discussed above. FOL can more properly be viewed as a sophisticated, interactive
environment for using logic to study epistemological questions (see Weyhrauch, 1978).

___ 1.
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Logic and Representation

First-order logic, as we iave described it, demands a clean syntax, clear semantics,
and, above all, the notions of truth and inference. Clarity about what is being expressed and
about the consequences of, or possible inferences from, a set of facts is perhaps the most
important quality of this formalism.

In a classic paper, McCarthy and Hayes (1989) differentiate two parts of the Al
problem. The epistemological part was defined as determining "what kinds of facts about the
world are available to an observer with given opportunities to observe, how these facts can
be represented in the memory of a computer, and what rules permit legitimate conclusions to
be drawn from these facts" (McCarthy, 1977). The issue of processing, of us.ng the
knowledge once represented, what McCarthy and Hayes called the heuristic part of the Al

problem, was separated from the representation issue. Given this distinction, logic can be a
useful means for exploring the epistemological problems for several reasons.

1. Logic often seems a natural way to express certain notions. As McCarthy
(1977) and Filman (1979) point out, the expression of a problem in logic often
corresponds to our intuitive understanding of the domain. Green (1969) also
indicated that a logical representation was easier to reformulate; thus,
experimentation Is made easier.

2. Logic is precise. There are standard methods of determining the meaning of an
expression In a logical formalism. Hayes (1977a) presents a complete
discussion on this Issue, and argues for the advantages of logic over other
representation systems on these grounds.

3. Logic is flexible. Since logic makes no commitment to the kinds of processes
which will actually make deductions, a particular fact can be represented in a
single way, without having to consider its possible use.

4. Logic is modular. Logical assertions can be entered in a data base
*independently of each other; knowledge can grow incrementally, as new facts

are discovered and added. In other representational systems, the addition ot
a new fact might sometimes adversely affect the kinds of deductions which
can be made.

The major disadvantage of logic also stems from the separation of representation from
Processing. The difficulty with most current Artificial Intelligence systems lies in the heuristic
part of the system, i.e., In determining how to use the facts stored in the system's data
structures, not in deciding how to store them (for example, QA3's failure with large
databases). Thus, separating the two aspects and concentrating on epistemrological
questions merely postpones addressing the problem. Work on procedural representation
schemes such as PLANNER (article C2) and on frame-based schemes (article C?) are efforts
to Incorporate the heuristic aspect into the epistemologlcal; systems like GOLUX (Hayes,
1977b) and FOL (Weyhrauch. 1978) are attempts to formalize control of processing, while
retaining the logical precision.
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C2. Procedural Representations of Knowledge

The distinction between declarative and procedural representations of knowledge has had
a key role in the historical development of Al ideas. Declarative representations stress the
"static" aspects of knowledge--facts about objects, events, their relationships, and states
of the world. The proponents of procedural representations pointed out that Al systems had
to know how to use their knowledge--find relevant facts, make inferences, etc.--and that this
aspect of knowledgeable behavior was best captured in procedures. (Hayes, 1977a,
discusses the different kinds of knowledge amenable to different types of representation
schemes.)

As a simple example of what it means to represent knowledge procedurally, consider
what a typical alphabetization program could be said to "know" about its task. The
knowledge that "A comes before B in the alphabet," is represented implicitly in the body of
the alphabetization procedure, which really does an Integer comparison of the computer
codes for A and B. All computer programs incorporate procedural knowledge of this sort.
What the proceduralists pointed out was that, while the knowledge about alphabetical order
was implicit in such a system, the knowledge about how to alphabetize was represented
explicitly In the alphabetization procedure. On the other hand, in declarative system, where
knowledge about alphabetical order might be explicitly represented as facts like A comes
before B, B comes before C, etc., the knowledge about how to alphabetize is implicit in the
programs that manipulate those facts (theorem prover, production system interpreter, etc.).

Before the advent of proceduralism, workers in At focused on determining what kinds of
knowledge could be represented adequately in formalisms like logic and semantic nets.
Questions about how the data structures involved could be manipulated effectively as the
databases grew larger were considered a secondary concern. The proceduralists took
exception to this view. They argued that the useful knowledge of a domain is intrinsically
bound up with the specialized knowledge about how it is to be used (Hewitt, 1975). Through
an evolving series of new systems and Al programming languages, the prooonents of
procedural knowledge representation brought concerns about the relevance and utility of
knowledge into the center of knowledge representation research.

Early Procedural Systems

The first Al systems that might be called procedural were not extreme in their stance:
their factual knowledge was stored in a database similar to those used by the then popular
theorem-proving programs, but their reasoning was structured In a new way. (See Winograd,
1972, for a discussion of the development of proceduralist ideas.)

Such an approach was used In Raphael's (1968) early question-answering system. SIR
(see article Natural Lenguage.F1). SIR could answer questions about simple logical
relationships, such as Is a finger part of a person? Its knowledge was stored in two forms:
facts about the parts of things were represented as properties "linked" to the nodes
representing the objects and the inference-making mechanism was represented as
stored facts, that a finger Is part of a hand and that a hand Is part of a person, and one

procedure, a specialized induction procedure that traced part-of links between nodes. The
inference routines were specialized In that they had to be custom-built for each new type of
Inference and link in the database.
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However, the most characteristically procedural quality of the SIR system was that the
meaning of an input sentence or question, the final result of SIR's parsing stage, was a
procedure. When executed, this routine performed the desired action--either adding to the
database or printing information found therein. In other words, when the sentence A finger is
part of a hand was entered into the system, SIR produced and immediately executed a
procedure which added a PART-OF link to the database between the FINGER node and the
HAND node.

Woods (1968) implemented the most sophisticated of the early procedural systems.
His program handled questions about airline flight schedules. The questions were translated
into functions which, when run over the system's database, produced the correct response.
For example, the question What American Airlines flights go from Boston to Chicago? would be
translated into the query language as:

(FOR-EVERY XI/FLIGHT;
EQUAL (OWNER(XI), AMERICAN-AIRLINES)

AND CONNECT (Xl, BOSTON, CHICAGO);
LIST(Xl))

This expression of the question is a function (in the LISP programming language) built from
other speclalzed-knowledge procedures like FOR-EVERY and CONNECT. When evaluated, this
function would retrieve a list of all of the flights in the data base, then find out which of
those were owned by American Airlines, then which of those went from Boston to Chicago,
and finally print the resulting list.

Representing How to Use Knowledge

The great advantage of the early procedural systems was that they were directed in
their problem solving activity in the sense that they did not use irrelevant knowledge or
follow unnatural lines of reasoning. These Inefficient types of behavior, characteristic of the
early declarative systems that blindly tried to apply anything they knew to the problem at
hand until something worked, were eliminated by the specialized inference procedures. But
this solution created problems of its own. In general, as procedural systems become very
complex, they become very hard for people to understand and modify.

Thus, in the late 1960's there was an effort to merge the two types of representation,
seeking the ease of modification of the declarative systems (especially logic) and the
directedness of the earlier procedural systems. The essence of this approach was to
represent declarative knowledge of the type typically encoded in logic expressions along
with instructions for its use. The thrust of the later work in procedural representations was to
try to find better ways of expressing this control information.

Information about how to use a piece of knowledge might concern various aspects of
processing. One form of control is to indicate the direction In which an implication can be
used. For example, to encode the idea that to prove that something flies you might want to
show that it is a bird, from which the desired conclusion follows, one might write something
like this:

I
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(IF-NEEDED FLIES (X)
TRY-SHOWING BIRD (X))

Thus, if we are trying to prove that Clyde can fly, this heuristic tells us to first try to prove
that he is a bird. Note that the knowledge that All birds can fly, as represented here, is not
usable in the other direction--if we learn that Fred is a bird, we will not be able to
immediately conclude anything about Fred being able to fly.

Another use of procedural knowledge occurs when we try to specify what knowledge
will be relevant to achieving a specific goal. For example, if expect that we might want to
prove that something is a bird, and that two facts called, say, THEOREM1 and THEOREM2
might be useful in proving birdhood, we could write:

(GOAL BIRD (TRY-USING THEOREM 1 THEOREM2)).

In essence, what has been done here is to embellish the straightforward deduction
provided by resolution or natural-deduction theorem proving in a logic-based representation.
The Inferences here are controlled; we have told the system how and when it can use the
knowledge that it has. Three major methods of specifying control information have been
tried:

1) Specify control by the way in which one states the facts; this is the approach
used in the examples above and in PLANNER, discussed below.

2) Encode the representation language at a lower level, so that the user has
access to the set of mechanisms for specifying the reasoning process. This
is the approach taken in the CONNIVER programming language (Sussman and
McDermott, 1972, and see article Al Programming Lenguages.C3).

3) Define an additional language, used to express control information, which
works together with the representation language. This idea was the
foundation for the GOLUX project (Hayes, 1973) and for Kowalski's (1974)
predicate calculus programming.

Of the three approaches, the work on PLANNER was widely used and was seminal for later
work on procedural representations.

PLANNER: Guided Inference and Extended Logic

PLANNER (Hewitt, 1972) was an Al programming language designed to implement both
representational and control Information. The features of the language are described in
article Al Programming Lnnguages.C2, and we discuss here only those aspects relevant to
knowledge representation. The specific concern of the PLANNER research was not to
facilitate the class of inferences which were logically possible, as would be the focus in
theorem proving work, but to expedite the Inferences which were expected to actually be
needed. This approach created its own problems; there are some quite straightforward
deductions which PLANNER is unable to make, as will be discussed later.
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The relevant features of the PLANNER language include the ability to specify whether
theorems should be used in a forward or backward direction and the ability to recommend the
use of specific theorems in given situations, as described In the preceding section. In fact,
the ability to recommend pieces of knowledge was somewhat more general than indicated
previously. Besides recommending possibly useful theorems by name, general classes of
theorems could be suggested via the use of filters. For example, the idea that the most
promising way to prove that something was a bird was to use theorems about zoology could
be expressed in PLANNER as:

(GOAL BIRD (FILTER ABOUT-ZOOLOGY)).

The implementation of these inference guiding control features did not change the
nature of the possible Inferences themselves. However, other procedural knowledge
implemented in PLANNER did allow Inferences beyond those found In classical logical systems,
partrularly the various forms of default reasoning (Reiter, 1978). One form of default, as
implet tented in PLANNER, is the THNOT primitive. For example, the expression

(THNOT OSTRICH (X) ASSUME FLIES (X))

refersto all birds, X, and means that unless it can be shown that X Is en ostrich, assume that
it can fly.

THNOT can only function correctly If certain aspects of our knowledge are complete. In
the above example, we assume that, if X were an ostrich, we would either know that fact or
have some way to deduce it. If the knowledge base is not complete In this sense, the
system might make incorrect inferences. This is not necessarily a serious problem; there
might be times that we want the system to "jump to conclusions." This will be discussed
later.

THNOT and similar functions take us beyond the realm of ordinary logic, since they
violate the property of monotonicity. Monotonicity states that if a conclusion is derivable from
a certain collection of facts, the same conclusion remains derivable if more facts are added.
Thus, procedural and declarative systems implement different logics (Reiter, 1978). As Hewitt

i (1972) points out, the logic of PLANNER is a combination of classical logic, intuitionistic logic,
and recursive function theory. Winograd (1980a) outlines a taxonomy of extended inference
modes which are outside the provision of ordinary logic.

PLANNER thus serves as a programming language in which knowledge about both the
problem to be solved and the methods of solution can be stated in a modular, flexible style
reminiscent of logic. The intent is that the user be able to state as much or as little domain-
speciftc knowledge as required. The most extensive use of PLANNER was in Winograd's (1972)
SHROLU system (see article Natural Language.F4). A number of Al programming language
projects followed PLANNER, Including CONNIVER (Sussman and McDermott, 1972), QA4
(Rulifson, Derkson, and Waldinger, 1972), POPLER (Davies, 1972), and QLISP (Reboh et al.,
1976). For further discussion of many of these languages see the Al Programming
Lenqsagee chapter.

,~i!
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Advantages and Disadvantages of Procedural Representations

Chief among the advantages of using procedures to represent knowledge is their
facility for representing heuristic knowledge, especially domain-specific information which
might enable more directed deduction processes. This includes information about whether a
theorem should be used in a backward or forward direction, about what knowledge should be
used in a given situation, or about which subgoals should be tried first. The most important
result of this ability to encode heuristic knowledge is the directedness realized by such
systems, which of course is crucial in large systems which would get bogged down if the
problem solving was not efficient. Efficiency in this sense was the motivation behind most of
the work on procedural representations.

A related advantage is the ability to perform extended-logical Inferences, like tile default
reasoning described in the preceding section. There are efforts to try to achieve this kind
of informal or plausible reasoning in more formal logical systems (McCarthy, 1977). Winograd
(1 980a) discusses this issue further, arguing that these types of inferences are necessary
in a system which attempts to model human reasoning.

Procedural representation may also be at an advantage with regard to what is called
modeling, in particular in relation to the frame problem as identified by McCarthy and Hayes
(1969). This difficulty, common to all representation formalisms, refers to their inability to
model side effects of actions taken in the world by making corresponding modifications in the
database representing the state of the world. (Note that the frame problem has nothing to do
with the frame as a representation formalism, discussed in article C7.) For example, suppose
we are reasoning about a robot with a key moving from ROOM-1 to ROOM-2 to find and unlock
a safe. The initial situation, SO, might be represented in the database with assertions like:

1. IN (ROOM-I. ROBOT, SO)
2. IN (ROOM-I, KEY, SO)
3. IN (ROOM-2, SAFE, SO)

After the robot has moved from ROOM-1 to ROOM-2, the system must somehow know that
assertions (1) and (2) are now false, while assertion (3) is still true.

In a large system with many facts keeping track of these changes, especially the side
effects of actions, like the moving of the key to the safe, can be very tricky. The
propagation of those facts which have not changed is sometimes much easier !n a procedural
system: the procedure which performs the actions can update the database immediately.
(See also the discussion a similar way of dealing with the the frame problem in a direct
representation, article C5).

Two problems of the procedural approach in relation to more formal representational
schemes concern completeness and consistency. Many procedural systems are not romplete,
meaning that there are cases in which a system like PLANNER could know all the facts
required to reach a certain conclusion, but not be powerful enough to make the required
deductions (Moore, 1975). Of course, completeness is not necessarily always desirable.
There are cases when we might want the system to work quickly and not spend a long time
finding a particular answer or concluding that It cannot find the answer.

A deductive system Is consistent if all its deductions are correct--that is, if the

.................................................
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conclusion necessarily follows from the premises. Again, most theorem-proving systems have
this property, but procedural systems often do not. For example, the use of default
reasoning can introduce inconsistency in the presence of incomplete knowledge. Thus, if we
use the fact that Fred is a bird to conclude that he can fly, and later discover that he is an
ostrich, we will have inconsistency. Hewitt (1975) refers to this as the "Garbage In--
Garbage Out" principle.

Like completeness, consistency is not necessarily always desirable. McDermott and
Doyle (1980) argue that much of our reasoning is done by revising our beliefs in the
presence of new information. Similarly, Hewitt points out that most of our knowledge Is not
absolute; we regularly accept caveats and exceptions. If we control the reasoning
sufficiently tightly In the presence of inconsistency, the Garbage In--Garbage Out effect can
be avoided.

Another drawback of procedural representations in their current form is that the control
Information sometimes gets in the way. For example, If we want to prove that both
statements A and B are true, PLANNER allow us to express this as a goal: (THAND A B). But
this expression really means, prove A and then prove B--there is no way to state the goal
without including some control information.

Another feature which is sacrificed in the procedural approach is the modularity of
knowledge in the database that was so advantageous in logic and other declarative
schemes. In a procedural representation, the interaction between various facts is
unavoidable because of the heuristic Information itself. Therefore, a change or addition to
the knowledge base might have more far-reaching effects than a similar change in a base of
logic assertions. In essence, this is the price that is paid for the greater degree of control
permitted using procedures.

Two specific criticisms have been directed at PLANNER's method of specifying control.
First, it is too local: PLANNER is unable to consider the overall shape of the problem's solution
and therefore can make only local problem-solving decisions. Second, PLANNER is unable to
reason about its control information; ideally, it should be able to make decisions on the basis
of facts about control, as it can now make decisions on the basis of facts about the world.

Conclusions

The consensus among Al researchers is that there should be ways to embed control in
a deductive system, but that the methods tried thus far have many flaws in them (see, for
example, Moore, 1976, Ch. 5). Current research, especially on frame systems (article C7),
emphasizes a somewhat different approach to the problem of organizing knowledge with
special regard to its expected use, called procedural attachment.
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C3. Semantic Networks I
Many of the recent systems developed In Artificial Intelligence research use a class of

knowledge representation formalisms cafld semantic networks. These representation
formalisms are grouped together because they share a common notation, consisting of nodes
(drawn as dots, circles, or boxes in Illustrations) and arcs, or links, (drawn as arrows)
connecting the nodes. Both the nodes and the arcs carn have labels. Nodes are usually used
to represent objects, concepts, or situations in the domain, and the arcs are used to represent
the relationships between them.

The superficial similarity of this notation is all that some semantic network systems
have in common. For example, researchers in psychology, such as Quillian (1968). Norman
and Rumelhart (1976), and Anderson and Bower (1973), have developed semantic network
systems primarily as psychological models of human memory. Researchers in computer
science have been more concerned with developing functional representations for the
variety of types of knowledge needed in their systems. Because of these diverse goals,
there is no simple set of unifying principles to apply across all semantic network systems.
This article, however, will attempt to characterize some of the most common network
schemes. We will present a description of how simple concepts are represented in semantic
networks and then review some Al systems that use semantic networks. Finally, some more
difficult problems in semantic net representation will be mentioned and some of the proposed
solutions reviewed.

A Basic Description of the Representation Scheme

Suppose we wish to represent a simple fact like All robins are birds in a semantic
network. We might do this by creating two nodes to designate "robins" and "birds" with a
link connecting them, as follows:

isat

If Clyde is a particular individual whom we wished to assert is a robin, we could add a node
-for Clyde to the network as follows:

----isa RBNisa BR

Notice that in this example we have not only represented the two facts we initially intended
to represent, but we have also made it very easy to deduce a third fact, namely, that Clyde
is a bird, simply by following the ISA links: Clyde Is a robin. Robins are birds. So, Clyde is a bird.
The ease with which it is possible to make deductions about inheritance hierarchies such as
this one Is one reason for the popularity of semantic networks as a knowledge
representation. In a domain where much of the reasoning is based on a very complicated
taxonomy, a semantic network is a natural representation scheme (see, for example, the
PROSPECTOR system, article Applicationh.02).

Besides their taxonomic classification, one usually needs to represent knowledge about
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the properties of objects. For example, one might wish to express the fact birds have wings
in the network. We could do this as follows:

I CLDE j sa .[ROBIN i s  BIRD

has-part

INGS
As In the previous example, our choice of representation has made it very easy to write a
procedure to make the deductions that robins have wings and that Clyde has wings. All that
is necessary is to trace up the ISA-hierarchy, assuming any facts asserted about higher
nodes on the hierarchy can be considered assertions about the lower ones also, without
having to represent these assertions explicitly In the net. In Al jargon this type of reasoning
is called property inheritance, and the ISA link Is often referred to as a property inheritance link.

Suppose we wish to represent the fact Clyde owns a nest. Our first impulse may be to
encode this fact using an ownership link to a node representing Clyde's nest:

L sa "58ROBI: BIRD

own s isa

In the above example, NEST-I is the nest that Clyde owns. It is an instance of NEST, i.e., the
NEST node represents a general class of objects of which the NEST-1 node represents an
example. The above representation may be adequate for some purposes, but it has
shortcomings. Suppose one wanted to encode the additional information that Clyde owned
NEST-1 from Spring until Fall. This is impossible to do in the current network because the
ownership relation is encoded as a link, and links, by their nature, can only encode binary
relationships. What is needed is the semantic net equivalent of a four-place predicate in
logic, that would note the start-time and end-time of the ownership relationship, as well as
the owner and the object owned.

A solution to this problem was proposed by Simmons and Slocum (1972) and later
adopted in many semantic net systems: to allow nodes to represent situations and actions,
as well as objects and sets of objects. Each situation node can have a set of outgoing arcs,
called a case frame, which specify the various arguments to the situation predicate. For
example, using a situation node with case arcs, the network representation of the fact Clyde
owned a nest from Spring urtil Fall becomes

- -- iU
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EI~14Isf isaL CYD ] is , ROBIN J s [ BIRD

owner

ownee ;I NEST- isa& NEST

start-time , nisa

1 end-time s

isP SITTION

The node NEST-1iIs created to represent Clyde's nest, which, of course, ISA nest, as shown.
The OWN-1 node represents a particular instance of OWNERSHIP, namely, Clyde owning his
nest. And like all nodes which are Instances of OWNERSHIP, OWN-1 inherits case arcs to
OWNER, OWNEE, START-TIME, and END-TIME nodes. Many semantic network systems use
sets of case arcs motivated by linguistic considerations, e.g., general case structures for
agent, object, etc. (see article Natural Language.C4). One important use of the case-frame
structure for nodes Is the possibility of allowing Instance nodes, like OWN-i, to inherit
expectations about, and even default values for, certain of their attributes (see article C7 for a
discussion of inheritance In frame systems).

One more thing to note about the representation scheme described above Is that It
lends itself to the expression of states and actions in terms of a small number of primitive
concepts. For example, FLYING might be considered a type of MOTION, and could be
represented by a FLYING node having an ISA arc to the MOTION node and case arcs that
describe how flying is a specialization of moving. The use of a small number of semantic

primitives as the basis of a system's knowledge representation has both advantages and
disadvantages, and is discussed fully in article CS.

There are still some serious problems with our semantic net representation as it has
been developed so far. Suppose one wished to make the assertion The robin is an endangered
species. The simplest thing to do would be to create the following representation for this fact
In our net structure:



34 Representation of Knowledge

BIDhas-part INGSiII
isa

I isa

ENDA NGERE studied-by

SPECIES NARLIS T S]

This structure indicates that ROBINS are an ENDANGERED SPECIES, and that ENDANGERED
SPECIES are studied by NATURALISTS. The problem that is illustrated in this simple example.
involves Inheritance. Since the reasoning procedures, as they've been defined, treat the ISA
link as a property inheritance link, the instance node CLYDE inherits all the properties of
ENDANGERED SPECIES, just as it inherits the property of having wings from the BIRD node. In
this way, one might conclude from the fact that Naturalists study endangered species that
Naturalists study Clyde, which may or may not be true.

The source of the problem is that that there Is as yet no distinction in our network
formalism between an individual and a class of individuals. Furthermore, some things said
about a class are meant to be true of all members of a class, like Robins are birds, while some
refer to the class itself, e.g. Robins are an endangered species. Recent semantic net research
has explored various ways of making the semantics of network structures more precise and of
specifying different property inheritance strategies (Woods, 1975; Hendrix, 1976;
Brachman, 1979; Stefik, 1980).

A Brief History of Semantic Network-based Systems

The node and link formalism of semantic networks has found use In many Al systems in
differertt application domains. It Is Impossible to mention every one of these systems here,
but we will try to note the highlights and point out where in the Al literature these and
related systems are described more fully.

Ross Oulllan (1968) designed two early semantic network-based systems that were
Intended primarily as psychological models of associative memory. Quillian was the first to
make use of the node and link formalism, but his networks were simpler than those in the
bird's nest example above: They consisted of a number of groups of nodes, called planes.
Each plane encoded knowledge about a particular concept through interconnections of nodes
representing other concepts in the system. These interconnecting links allowed a few simple
ways of combining concepts: conjunction, disjunction, and the modification of one concept by
another.

I. m....-- ___________________________
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Quillian wrote procedures that manipulated the network to make inferences about a pair
of concepts by finding connections between the nodes that represented them. The method,
called spreading activation started from the two nodes and would then "activate" all nodes
connected to each of them. Then all of the nodes connected to each of those would in turn
be activated, forming an expanding sphere of activation around each of the original
concepts. When some concept was activated simultaneously from two directions, a
connection had been found. The program would then try to describe the connecting route
through the net in a stylized versior, of English (see article Natural Language.E for an
example).

Quillian's second system, called the Teachable Language Comprehender (1969)
attempted to solve some of the problems with the original system, like the lack of directedneus
In the net search, and was a bit more complex. Other semantic network-based computer
programs that were designed as psychological models of memory, including the HAM program
(Anderson and Bower, 1973) and the Active Structural Network system (Norman and
Rumelhart, 1976). are described fully in the Information Processing Psychology chapter.
Bertram Raphael's (1968) early Al system, SIR, mentioned earlier in article C2, was one of
the first programs to use semantic network techniques. SIR could ansroer questions requiring a
variety of simple reasoning tasks, such as "A finger is part of a hand, a hand is part of an
arm, therefore a finger is part of an arm." Although he did not claim to use a node and link
formalism, Raphael's use of binary predicates, such as PART-OF(FINGER, HAND), and
reasoning procedures was much like the early semantic net systems and faced many of the
same problems that these systems faced. (SIR is described in article Natural Language.F1 an
early natural language understanding systems).

In the early seventies, Robert Simmons designed a semantic network representation for
use in his natural language understanding research. As mentioned in the previous section,
Simmons's system used a linguistically motivated case frame approach for chosing arc types.
The system could parse sentences (using an ATN grammar), translate their meaning into
network structures, and finally generate answers to questions using tne semantic network
(Simmons and Slocum, 1972; Simmons, 1973).

Around the same time, Jaime Carbonell used a semantic network as the basis of his
tutoring program, SCHOLAR, which answered questions about the geographical infornation
stored in the net. In a mixed-initiative dialogue on the subject of South American geography,
SCHOLAR answered questions posed by the student and also generated appropriate
questions on its own initiative, giving timely hints when necessary (Carbonull, 1970;
Carbonell and Collins, 1974; SCHOLAR is described fully in article Education Applications.C1).

Two of the Al speech understanding systems, the systems developed at BBN (Woods et
al., 1976) and SRI (Walker, 1976), used semantic networks to represent knowledge about
their subject domains (see the Speech chapter). In connection with the SRI speech
understanding research, Hendrix (1976) developed the idea of network parfttioning, w'ich
provides a mechanism for dealing with a variety of difficult representation problems including
representing logical connectives, quantification, and hypothetical worlds

Recent network research involves "structuring" of the nodes and links In the network,
and Is related to the work on frame systems descibed ioi art.cle C7. For exampla, Myooolous,
Cohen, Borgida, and Sugar (1975) designed a system for grouplng related parts of a
semantic network into units called "scenarios." The network was used uy the TORUS
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system, a program to provide natural language access to a database management system.
Hayes (1977b) also designed a system that incorporates higher level structures similar to
scenarios, which he calls "depictions."

Reasoning with Semantic Networks

In semantic network representations, there is no formal semantics, no agreed up notion
of what a given representational structure "means," as there is in logic, for instance.
Meaning is assigned to a network structure only by the nature of the procedures that
manipulate the network. A wide variety of network-based systems have been designed that
use totally different procedures for making inferences.

One example of a network reasoning procedure was Quillian's spreading activation model
of human memory, described above. The reasoning mechanism used by most semantic
network systems is based on matching network structures: a network fragment is constructed,
representing a sought-for object or a query, and then matched against the network database
to see if such an object exists. Variable nodes in the fragment are bound in the matching
process to the values they must have to make the match perfect. For example, suppose we
use the following network as a database:

L J s ROBIN isa &I BIRD J
Towner

I ownee N---, ise ES

isa -NS

FSHIPV-. SITUATION

SAMPLE NETWORK DATABASE

and suppose we which to answer the questions What does Clyde own?. We might construct the
fragment:

w.~nn~,-. ~.4 & St'( .
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I owner rnne
isa

[ONSHIP]

which represents and instance of OWNERSHIP in which Clyde is the owner. This fragment is
then matched against the network database looking for an OWN node that has an OWNER link
to CLYDE. When it is found, the node that the OWNEE link points to Is bound in the partial
match and is the answer to the question. If no match had been found, of course, the answer
would be Clyde doesn't own anything.

The matcher can make inferences during the matching process to create network
structure that Is not explicitly present in the network. For example, suppose we wish to
answer the question Is there a bird who owns a nest? We could translate that question into the
following network fragment:

owner

I OW------------ own- --- isa

I isa

Here, the BIRD-?, NEST-?, and OWN-? nodes represent the yet to be determined bird-
owning-nest relationship. Notice that the query network fragment does not match the
knowledge database exactly. The deduction procedure would have to construct an ISA link
from CLYDE to BIRD to make the match possible. The matcher would bind BIRD-? to the node
CLYDE, OWN-? to OWN-, a, nd NEST-? to NEST-i, and the answer to the question would be
Yes, Clyde, since the CLYDE node was bound to BIRD-? in order to match the query fragment
to the database.

A good example of a network deduction system constructed around this matching
paradigm Is the SNIFFER system (Fikes and Hendrix, 1977). SNIFFER has the general power
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of a theorem prover for making deductions from the network database. It is also capable of
taking advantage of heuristic knowledge embedded in procedures called selector functions,
which provide advice about which network elements should be matched first and about how
to match the selected element. These heuristics allow the system to proceed in a direct and
sensible way when the amount of information in the database becomes very large and blind
retrieval strategies, like spreading activation or systematic matching, are useless because
they take too long to retrieve an answer.

Status of Network Representations

Semantic networks are a very popular representation scheme in Al. Node and link
structure captures something essential about symbols and pointers in symbolic computation
and about association in the psychology of memory. Most current work on the representation
of knowledge involves elaboration of the semantic net idea, in particular work on aggregate
network structures called frames. But like most of the efforts to deal with knowledge in Al,
the simple idea of having nodes that stand for things in the world and links that represent
the relations between things can't be pushed too far. Besides computational problems that
occur when network databases become large enough to represent non-trivial amounts of
knowledge, there are many more subtle problems involving the semantics of the network
structures. What does a node really "mean," is there a unique way to represent an idea,
how is the passage of time to be represented, how do you represent things which are not
facts about the world but rather ideas or beliefs, what are the rules about inheritance of
properties in networks, etc.? Current research on network representation schemes attempts
to deal with these concerns.

References

Introductory discussions of semantic networks can be found in Simmons (1973),
Anderson and Bower (1973), Norman and Rumelhart (197.5) and Winograd (1980b). Current
semantic network research is surveyed in the articles In Findler (1979).
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C4. Production Systems

Production systems were first proposed by Post (1943) but have since undergone such
theoretical and application-oriented development in Al that the current systems have little in
common with Post's formulation. In fact, just as the term semantic net refers to a variety of
different knowledge representation schemes based on the node and link formalism, so
production system is used to describe a variety of different kinds of systems based on one
very general underlying idea, the notion of condition/action pairs, called production rules, or
just productions. In this article we illustrate the basics of a production system (PS) with an
-elementary example and discuss some of the design decisions that result in the variety PS
architectures. We also describe some of the important Al systems that have been built using
PS architectures and discuss current Issues in PS design.

A Sample Production System

A production system consists of three parts: (1) a rulebase composed of a set of
production rules, (2) a special, buffer-like data structure which we shall call the context, and
(3) an interpreter that controls the system's activity. After briefly describing each of these
components, we'll go step-by-step through an example to show how a production system
works.

A production rule is a statement cast in the form "if this condition holds, then this action Is

appropriate." For example, the rule

, 4 ,Always punt on 4th down with long yardage required.

might be encoded as the production rule

IF it is fourth down AND long yardage Is required THEN punt.

The "IF" part of the productions, called the condition-part or left-hand side, states the
conditions that must occur for the production to be applicable, and the "THEN" part, called
the action-part or right-hand side, is the appropriate action to take. During the execution of
the production system, a production whose condition-part Is satisfied canfire, i.e. can have
its action-part executed by the interpreter. Although there are only a few productions In the
ruiebase of our example below, typical Al systems nowadays contain hundreds of productions
in their rulebases.

The context, which is sometimes called the data or short-term memory buffer, is the focus
of attention of the production rules. The left-hand side of each production in the rulebase
represents a condition that must occur in the context data structure before the production can
fire. For example, the condition might specify that some symbol is in the context, or that
something is not in it. The actions of the production rules can change the context so that
other rules will have their condition-parts satisfied. The context data structure may be a
simple list, a very large array, or, more typically, a medium size buffer with some internal
structure of its own.

Finally there Is the interpreter which, like the Interpreters in all computer systems, is a
program whose job is to decide what to do next. In a production system, the Interpreter has
the special task of deciding which production tn fire next.
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Consider a production system that might be used to identify food items given a few
hints, using a process similar to that used in the game of "20 Questions." The context data
structure for this system is a simple list of symbols, called CL. "On-CL X" means that the
symbol X is currently In the context. The system has the following rulebase and Interpreter.

PRODUCTIONS:

PI. IF On-CL green THEN Put-On-CL produce

P2. IF On-CL. packed in sm41l container THEN Put-On-CL deicacy

P3. IF On-CL refrigerated OR On-CL produce THEN Put-On-CL perishable

P4. IF On-CL weighs 15 lbj AND On-CL inexpensive
AND NOT On-CL perishable THEN Put-On-CL staple

P5. IF On-CL perishable AND On-CL weighs 15 lbs THEN Put-On-CL turkey

PS. IF On-CL weighs 15 lbs AND On-CL produce THEN Put-On-CL watermelon

INTERPRETER:

1. Find all prodactions whose condition parts are TRUE and make "applicable."

2. If more than one production Is applicable, then deactivate any production
whose action adds a duplicate symbol to the CL.

3. Execute the action of the lowest numbered (or only) applicable production.
If no productions are applicable, then quit.

4. Reset "applicability" of all productions, and return to S1.

The condition-part of each of the productions corresponds to a question cne might ask In the
20-Questions game: "Is the item green?," "Does it come in a small container?," etc. The
action-parts of the productions represent additions to our knowledge about the unknown
item.

Production systems operate In cycles. In each cycle, the productions are examined In
a manner specified by the Interpreter to see which are appropriate and could fire. Then, If
more than one is found appropriate, one production is selected from among them. Finally, the
production Is fired. These three phaJej of each cycle are called matching, conflict resolution,
end action, respectively.

Suppose the the original knowledge about the mystery food item is that it is green and
weighs 16 pounds; In other words, the value of the context list before the beginning of the
first cycle Is:

CL * (green, weighs 1i Ibs).

I
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The cycle starts with Step 1 of the interpreter algorithm: finding all the applicable
productions by testing their condition-parts. Since only P1 is applicable, Step 2 Is not
necessary, and Step 3 causes the action-part of P1 to be executed. This adds the symbol
produce to the CL, representing a new fact about the unknown food item:

CL a (produce, green, weighs 15 1b).

Step 4 ends the first cycle and brings us back to Step 1--finding all the applicable
productions. In the second cycle, productions P1, P3, and P6 are all applicable. So in Step 2
we must check if any of these three add a duplicate symbol to the CL. P1 adds produce,
which is a duplication, so it Is eliminated. Then in Step 3 we select P3 to be executed
(because it has a lower number than PO), resulting in:

CL z (perishable, produce, green, weighs 1.5 b).

In the third cycle, we find that productions P1, P3, P5, and P6 are applicable.
Checking, in Step 2, for redundant entries, we eliminate P1 and P3 from consideration. In
Step 3, we decide to execute P5, once again because it comes before P6. This results In
the context list:

CL x (turkey, perishable, produce, green, weighs 15 fbi).

Clearly this last step was a mistake--we wouldn't want to ascribe to something that we
know Is green produce the attribute turkey.

In its next two cycles of execution, our example production system will finish. In cycle
four, the symbol watermelon is added to the context list, and In the last cycle, finding no non-
redundant productions to fire, the interpre er finally quits, leaving the context list:

CL a (watermelon, turkey, perishable, produce, green, weighs 15 lbi).

If we define the system's "answer" to be the first symbol on the context list, we can Ignore

the suspicious attribute turkey. The reader can probably think of more satisfying ways to
"fix up" the rulebase, or the interpreter, such as changing the productions (particularly
adding conditions to the condition-part of P5), switching the order of the productions In the
rulebase around, adding new productions, and so on. This feeling of manageability of the
rulebase Is perhaps one of the strongest attractions of production systems as a knowledge
representation scheme.

Advantages and Disadvantages of Productions Systems

Production systems have most often been used in Artificial Intelligence programs to
represent a body of knowledge about how people do a specific, real-world task, like speech
understanding, medical diagnosis, or mineral exploration. In psychology, production systems
have also been a popular tool for modelling human behavior, perhaps because of the
stimulus/response character of production rules (Anderson and Bower, 1973; Newell, 1973).
These psychological models are described In the Information Processing Psychology chapter.

* The Al systems based on productions have been quite diverse in most respects, but there
are some features of the production system formalism, both good and Dad, that can be
generalized.

I _________________________________________
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Modularity. One obvious quality of production systems is that the individual
productions in the rulebase can be added, deleted, or changed independently. They behave
much like independent pieces of knowledge. Changing one rule, although it may change the
performance of the system, can be accomplished without worrying about direct effects on the
other rules, since rules communicate only via the context data structure (looking to see if
their conditions are satisfied in the context and then modifying the context); they don't call
each other directly. This relative modularity of the rules Is important in building the large
rulebases used in current At systems--knowng what a proposed new rule will mean, in
whatever situation it is used, makes the creation of the database much easier. There are
indications, however, that modularity Is harder to maintain as one moves to larger systems
(Rychener, 1976), and, even if modularity can be preserved, strongly constraining interaction
among rules leads to inefficiencies which might become important problems in large systems
(see below).

Uniformity. Another general attribute of production systems is the uniform structure
imposed on the knowledge in the rulebase. Since all information must be encoded within the
rigid structure of production rules, it can often be more easily understood, by another person
or by another part of the system itself, than would be possible in the relatively free form of
semantic net or procedural representation schemes, for example. Production systems that
examine and automatically modify their own rules are exemplified by those of Waterman,
Davis, and Anderson (see below).

Naturalness. A further advantage of the production system formalism is the ease with
which one can express certain important types of knowledge. In particular, statements
about what to do In predetermined situations are naturally encoded into production rules.
Furthermore, it is these kinds of statements that are most frequently used by human experts
to explain how they do their jobs.

Inefficiency. There are, however, significant disadvantages Inherent in the production
system formalism. One of these is inefficiency of program execution. The strong modularity
and uniformity of the productions results in high overhead in their use in problem solving. For
example, since PSs perform every action via the match/action cycle and convey all
information via the context data structure, it is difficult to make them efficiently responsive to
predetermined sequences of situations or to take larger steps In their reasoning when the
situation demands it (see Barstow, 1979). Lenat and McDermott (1977) proposes solutions
to this type of problem, sacrificing some of the advantages of production systems.

Opacity. A second disadvantage of the production system formalism Is that it is hard
to follow the flow of control In problem solving--algorithms are less apparent than they would
be If they were expressed In a programming language. In other words, although
situation/action knowledge can be expressed naturally in production systems, algorithmic
knowledge is not expressed naturally. Two factors that contribute to this problem are the
isolation of productions (they don't call each other) and the uniform size of productions (there
is nothing like a subroutine hierarchy where one production can be composed of several sub-
productions). Function calls and subroutines, common features of all programming languages,
would help to make the flos of control easier to follow.
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Appropriate Domains for Production Systems

The features of PSs described in the previous section can be seen as having good and
bad consequences. A more fruitful way to evaluate the utility of PSs is to characterize the
domains for which production rules might be a useful knowledge representation scheme.
Davis and King (1977) proposed the following characteristics for appropriate domains:

a) domains in which the knowledge is diffuse, consisting of many facts (e.g.,
clinical medicine), as opposed to domains in which there is a concise, unified
theory (physics);

b) domains in which processes can be represented as a set of independent
actions (a medical patient-monitoring system), as opposed to domains with
dependent sub-processes (a payro. program);

c) domains in which knowledge can be easily separated from the manner in which
it is to be used (e.g., a classificatory taxonomy, like those used in biology), as
opposed to cases in which representation and control are merged (e.g., a
recipe).

Rychener (1976) rephrased this characterization of appropriate domains in Al terms: if we
can view the task at hand as a sequence of transitions from one state to another in a
Problem space (see article Search.Overview), we ca, model this behavior with production
systems, since each transition can be effectively represented by one, or more production
firings. The following examples of important Al production systems may help demonstrate
their utility.

Waterman (1970) implemented an adaptive production system to play the game of draw
poker (see article Learning.B1). The program was adaptive in that it automatically changed
the productions In its rulebase--it started with a set of fairly simple heuristics for playing
poker (when to raise, when to bluff, etc.) and extended and improved these rules as it
gained experience in actually playing the game. The fact that knowledge in production
systems is represented in a constrained, modular 'ashion tacilitated the learning aspect of
the system, since the program needed to analyze and manipulate its own representation.
Other examples of production systems which model human learning are those of Hedrick
(1976), Vere (1977), and Anderson, Kline, and Beasley (1979.).

The MYCIN system (Shortliffe, 1976; Davis, Buchanan, and Shortliffe, 1977) acts as a
medical consultant, aiding in the diagnosis and selection of therapy for a patients with
bacteremia or meningitis infections (see article Medical Application.Cl). It carries out an
interactive dialogue with a physician and is capable of cxplafning its reasoning. it also
includes a knomledge acquisition subsystem, TEIRESIAS, which helps expert physicians to
expand or modify the rulebase (article Applicationu.B). MYCIN's rulebase contains several
hundred production rules representing human-expert-level knowedge about the domain. The
system is distinguished by its use of a backward chaining control structure (see below) and
inexact reasoning, Involving confidence factors which are attached to the conclusion part of
each production to help determine the relative strengths of alternative diagnoses.

Lenat (1980) modeled the process of discovery in mathematics, viewed as heuristic
search, in his AM production system (see article Applications.Ca). AM started with a minimal
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knowledge of mathematical concepts and used heuristics, represented as production rules, to
expand its knowledge about these concepts and learn new ones. In the course of its
operation, AM discovered a large number of important mathematical concepts, such as prime
numbers, the arithmetic functions, etc., and also two mathematical concepts which had not
been discovered before. AM is especially important because of its sophisticated data
structures and control mechanisms.

Rychener (1976) built several production systems to reimplement a number of Al
systems that had been previously developed using other techniques, including Bobrow's
STUDENT, Newell and Simon's GPS, Feigenbaum's EPAM, Winograd's SHRDLU, and Berliner's
CAPS. Rychener's intent was to show that the production system formalism was a natural
one for programming. His primary problem was the difficulty of building very complex control
structures (Rychener, 1977).

Current Issues in Production System Design

Complexity of Left- and Right-hand Sides. The structure of the two sides of the
productions in the rulebase has been progressively extended as the size and complexity of
systems has increased, so that in many current systems the left-hand side (LHS) is a LISP
function that can evaluate an arbitrarily complex condition. In some systems, the testing of
the LHS can even have side effects, so that the rule can alter the context or change the
control sequence without ever being fired. Similarly, the form of the RHS has been extended
include variables, whose values are bound during the test phase of the cycle, and to allow
running arbitrary programs rather than just making changes in the context. These programs
usually specify actions in terms of a set of domain-specific conceptual primitives. In some
systems (Riesbeck, 1975; Rychener, 1976) these actions could include activation or
deactivation of sets of other productions. Again, this represents a radical extension of the
original production system formalism.

Structure of the Rulebase and Context. Of the three phases of each production
system cycle, matching, conflict resolution, and action, the matching process uses by far the
most computational resources. As PSs have become bigger and more complex, questions of
efficiency have necessitated making both the rulebase and the context into more complex
data structures. For example, in order to allow rapid determination of which productions are
applicable in a given situation without checking through all of the rulebase, the productions
are often indexed or partitioned according to conditions that will make them fire (see Davis,
1980, and Lenat and McDermott, 1977). The context data structure has increased in internal
complexity both for reasons of efficiency and in order to allow it to represent more
complicated situations. MYCIN's context tree (Shortliffe, 1976), HEARSAY's blackboard (Erman
and Lesser, 1975), and PROSPECTOR's semantic net (Duds, Hart, Nilsson, and Sutherland,
1978) are examples of complex context data structures. A good example of the work in
organizing the rulebase and database is that of McDermott, Newell, and Moore (1978).

Conflict Resolution. In practice, it is often the case that more than one rule could fire
in each cycle of the operation of a typical large production system; the system Is required to
choose one from among this set (called the conflict set). This conflict resolution phase of each
cycle is where basic cognitive traits like action sequencing, attention focusing,
interruptability, and control of instability are realized. Several different approaches to
conflict resolution have been tried, including chosing:
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-- The first rule that matches the context, where first is defined in terms of some
explicit linear order of the rulebase.

-- The highest priority rule, where priority Is defined by the programmer according to
the demands and characteristics of the task (as in DENDRAL).

-- The most specific rule, i.e., the one with the most detailed condition-part that
matches the current context.

-- The rule which references the element most recently added to the context.

-- A new rule, i.e., a rule/binding instantiation that has not occurred previously.

-- A rule arbitrarily.

-- Not to choose--exploring all the applicable rules in parallel (as in MYCIN).

Different systems use different combinations of these simple conflict resolution methods,
some of which become quite complicated scheduling algorithms (see, for example, AM and
HEARSAY). Good discussions of conflict resolution can be found In Davis and King (1977).
Also, McDermott and Forgy (1978) discuss the way conflict resolution strategies affect two
important characteristics for production systems: sensitivity, the ability to respond quickly to
changes in the environment, and stability, the ability to carry out relatively long sequences of
actions. They conclude that no simple conflict resolution strategy can be completely
satisfactory.

Direction of Inference. Research on deductive inference has recognized two
fundamentally different ways that people reason. Sometimes we work in a data-driven, event-
driven, or bottom-up direction, starting from the available information as it comes in and trying
to draw conclusions that are appropriate to our goals. This Is how our sample production
system worked, for example. In PS research this is called a forward chaining method of
inference. On the other hand, we sometimes work the other way, starting from a goal or
expectation of what is to happen and working backwards, looking for evidence that supports or
contradicts our hunch. This is called goal-driven. expectation-driven, or top-down thinking, and
in production systems it is referred to as backward chaining, since it requires looking at the
action-parts of rules to find ones that would conclude the current goal, then looking at the
left-hand sides of those rules to find out what conditions would make them fire, then finding
other rules whose action-parts conclude these conditions, and so on. MYCIN's use of
backward-chaining is described fully in article Medical Applicatiorm.C.

Primitive Vocabulary. As the complexity of the condition- and action-parts of the
productions in the rulebase increases, there has been greater concern about the nature of
the expressions allowed--the kinds of conditions and actions that can be expressed. A
significant aspect of the representation language issue concerns the choice of vocabulary or
semantic primitives, i.e., the functions or predicates in terms of which the rules and context
elements are expressed (see article CS). Different systems will define their vocabulary at
higher or lower levels, depending upon the task to be accomplished.

.-.----- -
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Conclusion

Perhaps the final word on production systems is that they capture in a manageable
representation scheme a certain type of problem-solving knowledge--knowledge about what
to do in a specific situation, Although this kind of knowledge is basically procedural, the
production system formalism has many of the advantages of declarative representation
schemes, most Importantly modularity of the rules. Furthermore, the way that the productions
themselves are structured Is very similar to the way that people talk about how they solve
problems. For this reason, production systems have been used as the backbone for expert
Al systems like DENDRAL, MYCIN, and PROSPECTOR (see Applications chapters). Research on
these knowledge-based expert systems, called knowledge engineering (Feigenbaum, 1977;
Bernstein, 1977) is concerned not only with expert-level performance, but also with the
interactive transfer of expertise--acquisition of knowledge from human experts and explanation
of reasoning to human users (Davis, 1980).
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C5. Direct (Analogical) Representations

There is a class of representation schemes, called analogical or direct representations,
like maps, models, diagrams, and sheet music, that can represent knowledge about certain
aspects of the world in especially natural ways. This type of knowledge representation is
central to many Al tasks but seems at first quite different from the usual propositional
representation schemes like logic and semantic nets. Understanding the sense In which
direct and propositional representations are the same may help clarify the meaning of
concepts like representation, data structure, and Interpretative procedure.

Direct representations have been defined as schemes in which "properties of and
relations between parts of the representing configuration represent properties and relations
of parts In a complex represented configuration, so that the structure of the representation
gives information about the structure of what is represented" (Sloman, 1971). The
significant point here is the requirement of correspondence between relations in the
representational data strucutres and relations in the represented situation. For example, a
street map is a direct representation of a city In the sense that the distance between two
points on the map must correspond with the distance between the places they represent in
town. Hayes (1974) calls this type of connection between the representation and the
situation one of homomorphism (structural similarity) rather than just denotation.

Direct representations may be contrasted with the more prevalent propositional or
Fregean forms (so called after Frege, who invented the predicate calculus), which do not
require this homomorphic correspondence between relations in the representation and
relations in the situation--proximity of assertions in the database of a logic system, for
instance, indicates nothing about the location of objects in the world. Note that the
propositional and direct representations may actually use the same data strucutres, but
differ In how they use them--which properties of the data strucutres are used in what way
by the routines which operate on the representation to make inferences. Continuing with the
map example, if a routine for examining a map retrieved all distances from an internal table,
rather than by looking at the map, it would be pointless to say that the map was direct with
respect to distance.

Thus, it is the combination of the data structures and the semantic interpretation function
(SIF) that manipulates them that should be referred to as direct, and only with respect to
certain properties (Pylyshyn, 1975, 1978). For example, a map (with & reasonable SIF) is
direct with respect to location and hence distance, but not, usually, with respect to
elevation. For some problems, direct representation has significant advantages. In
particular, the problem of updating the representation to reflect changes in the world is
simpler. For example, If we add a new city to a map, we need only put it in the right place.
It Is not necessary to explicitly state Its distance from all the old cities, since the distance
on the map accurately represents the distance in the world. See the discussion of the j.ame
Problem (McCarthy and Hayes, 1969) in article C2.

The distinction between direct and propositional representations has also been the
subject of discussions in psychology concerning the character of human memory, wnich
seems to have properties of both types (Pylyshyn, 1973). The next section of this article
presents some Al systems which use direct representations. The final section returns to a
discussion of their advantages and disadvantages.
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Systems Using Analogical Representations

The Geometry Theorem Prover (Gelernter, 1963) was one of the earliest automated
theorem provers and was distinguished by its reliance on a diagram to guide the proof. The
system proved simple, high-school level theorems in Euclidean geometry like the following:

Given: Angle ABD equals angle DBC.
A Segment AD perpendicular segment AS.

Segment DC perpendicular segment BC.

10 Prove: Segment AD equals segment CD.

8 C

Using problem reduction techniques, the system worked backward from the goal to be proved.

Gelernter's system, which is described fully in article Search.03, Is mentioned here
because of its use of diagrams like the one above. The problem diagram was used in two
ways. The most important of these was the pruning heuristic: "Reject as false any
hypothesis (goal) which is not true in the diagram." In other words, those subgoals which
were obviously false in the diagram were not pursued via the formal proof methods. This use
of the diagram to guide the solution search resulted in the pruning of about 995 out of every
1000 subgoals at each level of search.

The other use of the diagram was to establish obvious facts concerning, for example,
the order that points fall on a given line and the intersection properties of lines in a plane.
Many of these are self-evident from the diagram, but would be tiresome to prove from
fundamental axioms. In certain such circumstances, the program would assume the fact true
if it were true in the diagram, while explicitly noting that it had made such an assumption.
The program was also able to add additional lines to the diagram, when necessary, to
facilitate the proof.

Work on the General Space Planner (Eastman, 1970, 1973) addressed the task of
arranging things In a space, e.g., furniture in a room, subject to given constraints that must be
satisfied, e.g., room for walkways, no overlapping, etc. A simple problem is:

JI
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Given the space and the objects ,--

and the constraints:

( must be adjacent to (3)

(2) must be adjacentfto 
(3)

1 must be visible from (3)
1 must not be adjacent to any other objects,

one solution is:

The system used a direct representation, called a variable domain array, which was a
specialization of the sort of two dimensional "diagram" used by Gelernter. Since the
structure of the representation reflected the structure of the space, with respect to the
properties of size, shape, and position, the system could be described as analogical for those
properties. Space was partitioned into a set of rectangles, and In addition to the above
properties, two others that are particularly important for the space planning task were easily
detectable from the variable domain array representation: filled vs. empty space and
overlapping objects.

The system solved the problems via a depth-first search algorithm, finding locations for
successive objects and backing up when it couldn't proceed without violating some
constraint. The search was facilitated by a constraint graph which represented, via
restrictions on the amount of area left, the effects of constraints between pairs of objects.
Thus, by attacking the most restrictive constraint first, the search was relatively efficient.
This method has been called constraint structured planning.

Note that Eastman's work is in one sense the reverse of Gelernter's. Gelernter's
system performed search in a propositional space (sets of formal statements) using an
analogical representation (the diagram) for guidance. Eastman's performed search in an
analogical space (the diagrammatic array) using a propositional form for heuristic guidance
(the constraint graph).

WHISPER (Funt, 1976, 1977) was a system designed to reason exclusively via the
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analogical representation. WHISPER operated in a simplified blocks-world environment,
solving problems like the following:

Given four blocks which start
in this configuration, what will
happen when block B tumbles onto block D?

A

D

C

The system consisted of three components:

1. The diagram, an array which represented the 2-dimensional scene In the
obvious way, as shown above.

2. The retina, used to "view" the diagram, consisted of a set of parallel
receptors, arranged in concentric circles; each receptor viewed a small part
of the diagram.

3. The high-level reasoner, containing qualitative physical knowledge, the domain-
dependent part of the system; it employed information regarding the behavior
of rigid bodies when acted upon by gravity.

The significance of the diagram to WHISPER lay in the fact that there were two types of
analogs present: between static states of the diagram and the world and also between
dynamic behavior of objects In the diagram and of objects in the world.

The correspondences between the diagram and the world were simple and well-
defined; no complicated processes were required to map from one to the other. A number of
properties, such as position, orientation, and size of blocks, were represented analogically.
For these properties, it was not necessary to perform complicated deductions, since the
desired information "fell out" of the diagrams. For example, as in Eastman's space planner,
to test whether or not a particular area of the world was "empty" (i.e., not occupied by any
block), the system had only to "look at" the corresponding area of the diagram. With most
propositional representations, It would be necessary to examine each block Individually,
testing whether or not that block overlapped the space in question (e.g., Fahlman, 1974).
The retina also provided a number of perceptual primitives, including center of area, contact
finding, similarity testing, etc. The high-level reasoner never looked at the diagram directly.
Note that certain properties (color, weight) were not represented in the analog. To reason
about these, normal Inference-making processes would be necessary.

.. 1.. ..._._- -
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Baker (1973) had earlier suggested a similar representational formalism. Like Funt, he
envisioned a 2-dimensional array to represent the diagram; however, he also discussed the
possibility of retaining spatial "smoothing" information within each cell of the array, to remove
some of the error induced by the coarseness of the array. Both Funt and Baker suggested
that the parallelism of their systems, pursuing several goals simultaneously, coupled well with
the analogical representations. Individual elements of their processors (in Funt's case, the
retina) could operate autonomously, with connections only to their (spatially) neighboring
cells. In this sort of network, arbitrary transformations, via combinations of translation and
rotation, could be represented.

Issues Concerning Direct Representations

The work done to date on direct representations raises a number of questions. First,
following Sloman (1976), we should clarify some common misconceptions about direct
representations. Analogical representations need not be continuous, nor need they be 2-
dimensional; an ordered list of numbers, for example, can be analogical with respect to size.
Also, like propositional representations, analogical ones may have a grammar which defines
what data structures are well-formed or "legal." The difference between the two types of
representation schemes lies in the nature of the correspondence between aspects of the
structure of the representation and the structure of the represented situation.

One of the advantages of analogical representations over their propositional
counterparts relates to the difference between observation and deduction. In some situations,
the former can be accomplished relatively cheaply in terms of the computation involved, and
direct representations often facilitate observation since important properties are "directly
observable" (Funt, 1976). For example, determining whether three points are ))much easier
using a direct representation (a diagram) than it would be to calculate analytically using their
coordinates. As another example, FIlman (1979) implemented a chess reasoning system
which relied on both Inference (searching several moves ahead) and observation (looking at
a semantic model of the current state of the chess board).

Funt (1976) relates a more abstract jistification for the use of analogical
representations. A propositional representation of a situation, e.g., a set of statements in
the predicate calculus, will often admit to several models. In other words, there might be
many situations of the world which would be represented by the same statements, since
they are distinguished in aspects that are not captured in the representation. Direct
representations, on the other hand, are usually more exhaustive and specific, admitting
fewer models, and in turn making for more efficient problem solving.

Additionally, as illustrated by Gelernter's work, the use of analogical representations
can facilitate search. Constraints In the problem situation are represented by constraints on
the types of transformations applied to the representation, so thut Impossible strategies are
rejected immediately.

There are, however, some disadvantages to the use of these direct representations.
First, the tendency toward more specific Inference schemes mentioned earlier has its
drawbacks--as Sloman (1975) points out, there are times when generality Is needed. For
example, consider the problem "If I start in room A and then move back and forth between
room A and room 8, which room will I be in after exactly 377 moves?" For this case, the best

... ..... ... ... ... ...... ... ... ... ... ... .
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approach is not to simulate the action, but to generalize the effects of odd and even
numbers of moves.

Second, Funt notes that some features of the analog may not hold in the actual
situation, and we might not know which ones these are. This is related to the general
problem of knowing the limits of the representation.

Third, analogical representations become unwieldy for certain types of incomplete
information. That is, if a new city is added to a map, its distance from other cities Is
obtained easily. But, suppose that its location Is known only indirectly, e.g., that It is
equidistant from cities Y and Z. Then the distance to other cities must be represented as
equations, and the power of the analog has been lost.

To conclude, direct representations are analogous with respect to somnt properties to the
situation being represented. Some properties (especially physical ones) may be relatively
easily represented analogically, resulting in significant savings In computation for certain
types of inferences.

References
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C6. Semantic Primitives

The knowledge representation formalisms described in this chapter, logic, procedures,
semantic nets, productions, direct representations, and frames, are all ways of expressing
the kinds of things we express in English--the kinds of things we "know." Having chosen a
representation technique, another major question in the design of an Al system concerns the
vocabulary to be used within that formalism. In a logic-based representation, for example,
what predicates are to be used? In a semantic net, what node and link types should be
provided? Research on semantic primitives is concerned with this problem of establishing the
representational vocabulary. This article, then, is not about a knowledge representation
technique per se, but rather about a representational Issue that concerns all of the
techniques used in Al.

The term semantic Primitive has no clear-cut definition. As a starting point, one may
think of a primitive as any symbol that is used but not defined within the system. The term is
so used by Wilks, for example, who accordingly concludes that "primitives are to be found in
all natural language understanding systems--even those ... that argue vigorously against
them" (Wilks, 1977c). A second and narrower usage takes semantic primitives to be
elements of meaning into which the meanings of words and sentences can be broken down;
examples of such work come from linguistics (e.g., Jackendoff, 1976, 1976) and psychology
(Miller, 1976; Miller and Johnson-Laird, 1976; Norman and Rumelhart, 1975) as well as from
Al.

Additional issues exist about what primitives really are, how they may be used in
reasoning, and what alternatives there are to using primitives. Winograd (1978) provides a
general survey and analysis of such questions, Some of these are illustrated in the following
discussion of the two major Al systems for natural language understanding that are
characterized by their authors as using semantic primitives.

Wilks's System

Yorick Wilks, now of the University of Essex, has been developing a natural language
system for machine translation since 1968 (described fully in article Natural Lenguage.F2).
The system accepts paragraphs of English text, producing from them an Internal
representation that is a data structure composed of nodes representing semantic primitives.
From this structure, a French translation of the input is generated. The translation serves as
a test of whether the English has been "understood," a more objective test than just
inspection of the internal representation. The translation task also has the advantage, Wilks
suggests, that correct translation of the Input may often require a shallower understanding
than would the ability to answer arbitrary questions about It. Consistent with these reasons
for the choice of translation as a task, most of the effort in Wilks's system Is spent in
converting the English input to the Internal representation.

The first major problem that Wiiks addressed was the resolution of word-sense ambiguity,
for this was the problem on which earlier machine translation efforts had foundered (se
article Natural Language.B). For example, In the sentence "The old salt was damp," it is
necessary to determine from the surrounding context whether "salt" means a chemical
compound or a sailor. Wlks's system also addressed problems involving other types of
ambiguity and extended word senses, as in "my car drinks gas."
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The general Idea of Wilks's approach, which he calls preference semantics, is to use
knowledge of possible word meanings to disambiguate other words. For example, part of the
meaning of "drink" is that It prefers a fluid object; and pert of the meanings of "wine" and
"gas" is that they are fluids. If the best fit among possible word senses does not satisfy all
preferences (such as the preference of "drink" for an animate subject), then an extended
word sense can be accepted. The formalism within which preferences are expressed, Wilke
suggests, Is closer to a frame representation than to a semantic net.

As the description above should make clear, a central requirement in Wilks's system is
a dictionary distinguishing among the various senses of words that can appear In the input
text. Definitions In the dictionary use a vocabulary of semantic primitiwes, grouped Into five
classes. Examples from each class are given below:

Substant ives

MAN a human
STUFF a substance
PART a part of an entity

Actions
CAUSE cusing something to happen
BE being as equivalence or predication
FLOW moving as liquids do

Cases
TO direction toward something
IN containment

Qualifiers

GOOD morally correct or approved
MUCH much, applied to a substance

Type indicators

HOw being a type of action--for adverbial constructions
KIND being a quality--for adjectival constructions

In addition to the primitive elements, of which there are currently over eighty, Wilks uses
several elements, distinguished by names beginning with an asterisk, that are defined as
equivalent to a class of primitives. For example, ft ANI (animate) encompasses MAN, FOLK (a
human group), BEAST (a nonhuman animal), and certain others. A typical definition using the
primitives is the following definition for one sense of the word *break":

(BREAK: (*HUM SUBJ)
(*PHYSOB OBJE)
((((NOTWHOLE KIND) BE) CAUSE) GOAL)
(THING INST)
STRIK)

This says roughly that "break" means a STRIKIng, done preferably by a HUMan SUBJect and
preferably with an INSTrument that Is a THING, with the GOAL of CAUSIng a PHYSical OBject
to BE NOT WHOLE. Words other than verbs are also defined by such stiuctured formulas. A
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detailed description of the syntax of such word-sense definitions, or semantic formulas, is
given in Wilks (1977c).

The completed representation of a text is a structure made up of such word-sense
formulas. At a level corresponding to the clause or simple sentence, formulas are arranged
into triples, or templatti, standing for an agent, an action, and an object; any of the three
may itself be qualified by other formulas. For example, "Small men sometimes father big
sons" would be structured as follows:

[man] ( (father] ( [sons]

[smill] [somelimes] [big]

Here the bracketed English words should be imagined as being replaced by the semantic
formulas representing their appropriate sense. Relationships among templates are Indicated
at a still higher level of structure.

What is the status of the primitive vocabulary in Wilks's system? First, he argues,
primitives are not essentially different from natural language words. A semantic description
in terms of primitives is just a description In "a reduced micro-language, with all the normal
weaknesses and vagueness of a natural language" (Wilks, 1977c). The justification for
using a language of primitives, then, is that it provides "a useful organizing hypothesis ... for
an Al natural language system."

Second, Wilks claims that Individual primitives have their meaning in the same way that
English words do: neither by direct reference to things, nor by correspondence to non-
linguistic psychological entities, but only by their function within the overall language.

- Third, in light of the nature of primitives, there is no one correct vocabulary for a
primitive language, any more than there is a correct vocabulary for English. The test of the
adequacy of a particular set of primitives is an operational one: the success or failure of the
linguistic computations that use it. As suggestive evidence that Wilks's own set of primitives
will indeed turn out to be adequate, he observes that it Is very similar to the eighty words
that are most frequently used in definitions in Webster's dictionary.

Finally, there are some general considerations to be taken into account In choosing a
set of primitives. Wilks (1 977c) identifies the following properties as desirable:

1. Finitude: The number of primitives should be finite and should be smaller than
the number of words whose meanings it is to encode.

2. Comprehensiveness: The set should be adequate to express and distinguish
among the senses of the word set whose meanings it Is to encode.

3. Independence: No primitive should be definable in terms of other primitives.

4. Noncircularity: No two primitives should be definable In terms of each other.

5. Primitiveness; No subset of the primitives should be replacable be a smaller
set.
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A qualification should be noted concerning the property of comprehensiveness: the definition
in primitives of a word-sense is not required to be exhaustive of meaning. Wilk& cites
"hammer," "mallet," and "axe" as terms among which a representation in primitives cannot be
expected to distinguish. In addition, the definition of a term is not expected to say
everything; Wilks distinguishes between word meanings, which definitions express, and facts
about things. The definition of "water," for example, might say that water is a liquid
substance, but not that water freezes into ice. Facts of the latter sort are expressed in
Wilks's system as in common-sense inference rules, which are separate from the dictionary
and are used only as a last resort in disambiguation.

Schank's Conceptual Dependency Theory

The Conceptual Dependency theory of Roger Schank, now of Yale University, has been
under development since 1969. Its most distinctive feature, the attempt to provide a
representation of all actions using a small number of primitives, was first introduced in 1972.
(See articles Natural Longuage.F5 and Natural Lenguage.FS on Schank's natural language
understanding systems.)

There are significant differences between the systems of Schank and Wilks, both in
the general outline of their systems and in their views of primitives. Wilks's system, for
example, Is oriented toward the task of machine translation, whereas Conceptual
Dependency theory makes broader claims. First, Schank emphasizes task independence. In
fact, the theory has been used as the basis of programs that, among other things, can
paraphrase an input text, translate it to another language, draw inferences from it, or answer
questions about it. Second, the theory is offered not only as a basis computer programs that
understand language, but also as an intuitive theory of human language processing.

Consistent with these claims, Schank holds that it is the business of an adequate
representation of natural language utterances to capture their underlying conceptual
structure. A first requirement is that the representation be unambiguous, even though the
input may contain syntactic ambiguity, as in " saw the Grand Canyon flying to New York," or
semantic ambiguity, as in "The old man's glasses were filled with sherry." The speaker of an
ambiguous sentence usually intends an unambiguous meaning, so the representation is
expected to reflect only the most likely version of what was intended.

A second requirement is that the representation be unique--that is, that distinct
sentences with the same conceptual content should have the same representation. Some
examples of groups of sentences that are all represented the same way are

I want a book.
I want to get a book.
I want to have a book.

and
Don't let John out of the room.
Prevent John from getting out of the room.

The principle of uniqueness of representation has been characterized as the basic axiom of
the system. It has also been identified as accounting for human abilities to paraphrase and
translate text. The problem of paraphrase--"how sentences which were constructed

ai
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differently lexically could be identical in meaning"--is a major theme throughout Schank's
work (Schank, 1975c).

To obtain unique, unambiguous representations of meaning, Schank's system relies
principally on a set of eleven primitive ACTs (Schank, 1976a; Schank and Abelson, 1977):

Physical acts

PROPEL apply a force to a physical object
MOVE move a body part
INGEST take something to the inside of an animate object
EXPEL force something out from inside an animate object
GRASP grasp an object physically

Acts characterized by resulting state changes

PTRANS change the location of a physical object
ATRANS change an abstract relationship, such as

possession or ownership, with respect to an object

Acts used mainly as instruments for other acts

SPEAK produce a sound
ATTEND direct a sense organ toward a stimulus

Mental acts

MTRANS transfer information
MBUILI construct new information from old information

There are several other categories, or concept types, besides the primitive ACTs in the
representational system. They are:

Picture Producers (PPs), which are physical objects. Some special cases included
among the PPs are natural forces like wind and three postulated divisions of
human memory: the Conceptual Processor, where conscious thought takes
place; the Intermediate Memory; and the Long Term Memory.

Picture Aiders (PAs), which are attributes of objects.

Times.

Locations.

Action Alders (AAs), which are attributes of ACTs.

Only a little work has been done on reducing these latter categories to a primitive set; see
Russell (1972) and Lehnert (1978) on the analysis of PPs, and Schank (1975a) on the
treatment of PAs as attribute-value pairs.

Detailed rules are provided for the ways that elements of these categories can be
combined into representations of meaning. There are two basic kinds of combinations, or

\J
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conceptualization. One involves an actor (a PP) doing a primitive ACT; the other involves an
object (a PP) and a description of its state (a PA). Conceptualizations can be tied together
by relationships of instrumentality or causation, among others.

The primitive elements that occur in conceptualizations are not words, according to
Schank, but concepts; they reflect a level of thought underlying language rather than
language itself. Consequently, representations of text in Conceptual Dependency are said
to be language-free. The task of translation, then, becomes only one task among many; it is
accomplished by parsing from one language into Conceptual Dependency, and then
generating text In the second language from the Conceptual Dependency representation.

The notion of language-free primitive concepts requires explication. For Schank, as for
Wilks, the justification for using primitives is functional. Schank differs from Wilks, however,
in his choice of the sort of function to be optimized, as well as In his view of primitives as
language-free and psychologically plausible. Schank particularly emphasizes the
computational advantages, to both programs and people, of storing propositions In a canonical
form (Schank, 1975b). This requires, in Schank's view, that information implicit in a sentence
be made explicit (Schank, 1976a; Schank and Abelson, 1977). Obtaining the implicit
information in turn requires inferencing, and it Is as an aid to making inferences that the use
of primitives receives Its most important justification:

Rather than stating that if you see something then you know it and if you
hear something then you know it and if you read something then you know
It and so on, we simply state that whenever an MTRANS exists, a likely
inference Is that the MTRANSed information is in the mental location LTM
[Long Term Memory] (our representation for "know"). This is a tremendous
savings of time and space. (Schank, 1975b)

Each primitive ACT, then, entails its own set of inferences. As a fuller example, the following

are the main inferences from the fact that X PTRANSed Y from W to Z:

1) Y is now located at Z.

2) Y is no longer at location W.

3) If Z a X, or Z Is human and requested the PTRANS, then Z will probably do
whatever one ordinarily does with Y. Moreover, Z probably will become
pleased by doing this. (Schank, 1976a)

Such Inferences provide both the criterion for choosing a set of primitives and the definition
of what primitives are. The primitive ACTs, Schank and Abelson (1977) state, are no more
than the sets of Inferences to which they give rise. Moreover:

The theoretical decision for what constitutes a primitive ACT is based on
whether the proposed new ACT carries with it a set of inferences not
already accounted for by an ACT that is already In use. Similarly, a
primitive ACT is dropped when we find that its inferences are already
handled by another ACT. (Schank, 1976b)

In his earlier work, Schank (1973a) claimed that the primitive ACTs of Conceptual



C6 Semantic Primitives 69

Dependency, together with some set of possible states of objects, were sufficient to
represent the meaning of any English verb. It soon became clear, however, that additional
mechanisms would be needed for a general-purpose language-understanding system. For
example, there are problems of quantification and of metaphor, which have not yet been
addressed (Schenk and Abelson, 1977). There are problems raised by the fact that natural-
language communications often presuppose a great deal of background knowledge, some of
which has to do with the typical course of events in commonplace situations like eating in a
restaurant or taking a bus (see article C7 on frame systems). Finally, of particular
Importance with respect to the use of primitives, there are problems arising from the fact
that Conceptual Dependency generally expresses the meaning of an action vera only in
terms of its physical realization. One example is the reduction of "kiss" to "MOVE lips to
lips" (Schank and Abelson, 1977). The inadequacy of this representation becomes
especially apparent in light of the claim that no information is lost by the use of primitive
ACTs to represent actions.

Recently Schank has added several new devices to his representational system to
reflect the purposive aspects of actions as well as their physical descriptions. These
include goals, which can be realized by appropriate sequences of acts; scripts, which provide
such sequences in simple stereotyped situations; p!ans, which provide a more flexible way of
specifying the appropriate action sequences, including the treatment of a whole set of
alternative subsequences as a single subgoal; and themes, which include people's
occupations (e.g., lawyer), their relationships with others (e.g., love), and their general aims
(e.g., getting rich), and which are offered as the source of their goals. The representation of
a piece of text is thus extended to try to take into account not only what caused what but
also what was intended to cause what and why the actor might have had such an intention in
the first place. In addition, Schank has recently supplemented the primitive ACTs with
several social ACTs--AUTHORIZE, ORDER, DISPUTE, and PETITION--in order to represent yet
another dimension of human actions more readily. None of these devices, however, is
characterized as introducing a new set of primitives.

References
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C7. Frames and Scripts

There is abundant psychological evidence that people use a large, well-coordinated
body of knowledge based on previous experiences to actively interpret new situations in
their everyday cognitive activity (Bartlett, 1932). For example, when we visit a restaurant
where we have never been before, we have an extensive array of expectations based on
experience in other restaurants about what we will find: menus, tables, waiters, etc. In
addition to these expectations about the objects in a typical restaurant, we have strong
expectations about the sequences of events that are likely to take place. Representing
knowledge about the objects and events typical to specific situations has been the focus of
the Al knowledge representation ideas called frames and scripts. Frames were originally
proposed by Minsky (1975) as a basis for understanding visual perception, natural language
dialogues, and other complex behaviors. Scripts, frame-like structures specifically designed
for representing sequences of events, have been developed by Schank and Abelson (1977)
and their colleagues. Both refer to methods of organizing the knowledge representation in a
way that directs attention and facilitates recall and inference.

Organizing Knowledge and Expectations

Frames provide a structure, a framework, in which new data is interpreted in terms of
concepts acquired through previous experience. Furthermore, the organization of this
knowledge facilitates expectation-driven processing, looking for things that are expected based
on the context one thinks one is in. The representational mechanism that enables this kind
of reasoning is the slot, the place where knowledge fits within the larger context created by
the frame. For example, a simple frame for the generic concept of chair might have slots for
number of legs, style of back, etc. A frame for a particular chair has the same slots, they
are inherited from the CHAIR frame, but the contents of the slots are more fully specified:

CHAIR Frame

Specialization-of: FURNITURE
Number-of-legs: an integer (DEFAULT:4)
Style-of-back: straight, cushioned,
Number-of-arms: 0, 1, or 2

JOHN'S-CHAIR Frame

Specialization-of: CHAIR
Number-of-legs: 4
Style-of-back: cushioned
Number-of-arms: 0

By supplying a place for knowledge, and thus creating the possibility of missing or
Incompletely specified knowledge, the slot mechanism enables reasoning based on seeking
confirmation of expectations--"fllling In slots."

To illustrate some of the current ideas about slots and frames and how they might be
used by a frame-based reasoning system, consider the following example of a Restaurant
Frame. The terminology used for this example is intended only to give the flavor of thestructure of knowledge in a frame, and does not follow any of the varied formalisms
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developed by the different researchers in this area (e.g., Minsky, 1975; Bobrow and
Winograd, 1977a; Schank and Abelson, 1977; Szolovitz, Hawkinson, and Martin, 1977;
Goldstein and Roberts, 1977; Brachman, 1978; Alkins, 1979; Stefik, 1980).

Generic RESTAURANT Frame

Specialization-of: Business-Establishment
Types:

range: (Cafeteria, Seat-Yourself, Wait-To-Be-Seated)
default: Wait-to-be-Seated
if-needed: IF plastic-orange-counter THEN Fast-Food,

IF stack-of-trays THEN Cafeteria,
IF wait-for-waitress-sign or reservations-made

THEN Wait-To-Be-Seated,
OTHERWISE Seat-Yourself.

Location:
range: an ADDRESS
if-needed: (Look at the MENU)

Name:
if-needed: (Look at the MENU)

Food-Style:
range: (Burgers, Chinese, American, Seafood, French)
default: American
if-added: (Update Alternatives of Restaurant)

Times-of-Operation:
range: a Time-of-Day
default: open evenings except Mondays

Payment-Form:
range: (Cash, CreditCard, Check, Washing-Dishes-Script)

Event-Sequence:
default: Eat-at-Restaurant Script

Alternatives:
range: all restaurants with same FoodStyle
if-needed: (Find all Restaurants with the same FoodStyle)

There are several different kinds of knowledge represented in this example. The

"Specialization-of" slot is used to establish a property inheritance hierarchy among the frames,
which in turn allows information about the parent frame to be inherited by its children, much
like the ISA link in semantic net representations (see article C3). Note that the "Location" slot
has sub-slots of its own--slots can have complex, frame-like structure in some systems. The
contents of the "Range" slot in this generic restaurant example is an expectation about what
kinds of things the Location of a restaurant might be. And the "If-Needed" slot contains an
attached procedure which can be used to determine the slot's value if necessary (see
discussion of procedural attachment below). Another important slot type is "Default," which
suggests a value for the slot unless there Is contradictory evidence. Many other types of
slots are used In the varlot.i frame systems, and the descriptions here are quite incomplete,
but they Will at least give an idea of the kinds of knowledge represented in frames.

As indicated In the "Event-Sequence" slot, knowedge about what typically happens at
a restaurant might be represented in a script, like the one below:

. .... " , ... . .... - . _ _ _ _ _ _ _
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EAT-AT-RESTAURANT Script

Props: (Restaurant, Money, Food, Menu, Tables, Chairs)
Roles: (Hungry-Persons, Wait-Persons, Chef-Persons)
Point-of-View: Hungry-Persons
Time-of-Occurrence: (Times-of-Operation of Restaurant)
Place-of-Occurrence: (Location of Restaurant)
Event-Sequence:

first: Enter-Restaurant Script
then: if (Wait-To-Be-Seated-Sign or Reservations)

then Get-Matre-d's-Attention Script
then: Please-Be-Seated Script
then: Order-Food-Script
then: Eat-Food-Script unless (Long-Wait) when

Exit-Restaurant-Angry Script
then: if (Food-Quality was better than Palatable)

then Complements-To-The-Chef Script
then: Pay-For-It-Script
finally: Leave-Restaurant Script

This is a rough rendition in English of the type of Restaurant script described by Schank and
Abelson (1977). The script specifies a normal or default sequence of events as well as
exceptions and possible error situations. The script also requires the use of a few static
descriptions such as "Props" and "Roles" that refer td other frames. Scripts are described
more fully in article Natural Language.F6.

Procedural Knowledge in Frames and Scripts

Underlying the declarative structure of frames and scripts--the way that they organize
the representation of static facts--is an important dynamic or procedural aspect of frame-
based systems. In particular, procedures can be attached to slots to drive the reasoning or
problem-solving behavior of the system. (See the general discussion of procedural
representation of knowledge in article C2). In some frame-based systems, attached
procedures are the principal mechanism for directing the reasoning process, being activated
to fill in slots "If-needed" or being "triggered" when a slot is filled (Bobrow, Kaplan, Kay,
Norman, Thompson, and Winograd, 1977).

Filling in Slots. After a particular frame or script has been selected to represent the
current context or situation, the primary process in a frame-based reasoning system is often
just filling In the details called for by its slots. For example, after selecting the Generic
Restaurant Frame above, one of the first things we might want the system to do is to

determine the value of the "Type" slot. This could be accomplished in one of several ways.
Sometimes the type Is dircctly inherited, but in this case there are several alternatives. For
instance, the default restaurant type can be used if there are no contraindications, or the
attached "if-Needed" procedure can be used to decide.

Default and inherited values are relatively inexpensive methods of filling in slots; they
don't require powerful reasoning processes. These methods account for a large part of the
power of frames--any new frames interpreting the situation can make use of values
determined by prior experience, without having to recompute them. When the needed
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information must be derived, attached procedures provide a means of specifying appropriate
methods that can take advantage of the current context, slot-specific heuristics. In other
words, general problem-solving methods can be augmented by domain-specific knowledge
about how to accomplish specific, slot-sized goals.

Besides directing the gathering of further information, filling in the slots provides
confirmation that the frame or script is appropriate for understanding the scene or event.
For example, Schank's script-based story understander, SAM, can be said to have
understood a written story when each slot in the appropriate script has been filled by an
event In the story, either explicit in the text or Implied (see article Natural Lenguage.FS).
Should the frame or script be found to be inappropriate, attached procedures can "trigger"
transfer of control to other frames.

Triggers. Another frequently used form of procedural attachment is routines that are
activated when the value of a slot is found or changed. These "trigger" procedures
implement event or data-driven processing, since they take over control only when certain
events or data occur (see article C4). For example, the "If-Added" procedure in the "Food-
Style" slot of the Generic Restaurant Frame is used to modify the list of alternative
restaurants once a particular cuisine is chosen.

In some systems, trigger procedures attached to special slots in the frame are used to
decide what to do in the event that the frame is found not to match the current situation.
For instance, if the Eat-at-Restaurant script were to discover a food line and a stack of
trays, it might trigger the Eat-at-Cafeteria script as being more appropriate. This triggering
procedure has been used in various frame-driven systems for medical diagnosis (Szolovitz,
Hawkinson, and Martin, 1977; Aikins, 1979). Since a number of related diseases might share
a core set of signs and symptoms, the ability to make a differential diagnosis depends
heavily on the ability to detect those factors that rule out or confirm a particular diagnosis.
Typically, In medicine, when one diagnosis is ruled out, a similar but more likely disease is
indicated.

Current Research on Frames and Scripts

A number of experimental prototype systems have been implemented to explore the
idea of frame-based processing introduced by Minsky (1976). The following descripteons are
intended to give an indication of the domains and problems researchers in this area address.

Bobrow, Kaplan, Kay, Norman, Thompson, and Winograd (1977) have experimented with
frame-based natural language understanding In their GUS system, and their article includes
clear examples of how frames might be used to control a system's reasoning. Designed as a
prototype automated airline reservation assistant, the system attempted to demonstrate how
various aspects of dialogue understanding--such as handling mixed-initiative dialogues,
Indirect answers, and anaphoric references--could be facilitated by the ability to provide
expectations and defaults available with frames. This system was also used to explore
procedural attachment issues.

Concurrently with the design of GUS, a frame-based programming/representation
language called KRL (Knowledge Representation Language) was developed to explore frame-
based processing (Bobrow and Winograd, 1977a). Many of the specific ideas about how
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frame-based systems might work were first suggested by the KRL research group. As part
of their early design work, the KRL group implemented several Al systems in the first version
of the language (Bobrow and Winograd, 1977b). The report details a number of difficulties
and shortcomings encountered, some of which are Inherent in frame-based processing.

Other work with frame-based systems includes the NUDGE system, developed by
Goldstein and Roberts (1977), which was used to understand incomplete and possibly
inconsistent management-scheduling requests and to provide a complete specification for a
conventional scheduling algorithm. Implemented in their FRL-0 language, the system also used
a frame-based semantics to resolve anaphoric requests (Bullwinkle, 1977).

A program that solves physics problems stated in English was developed by Novak
(1977). It used a set of canonical object frames, such as Point, Mass, and Pivot, to
Interpret the actual objects and their relations in a number of statics problems. These
canonical object frames were used to construct a view of an actual object as an abstract
object, thereby simplifying the problem representation.

The UNITS package, developed by Stefik (1980), is a useful implementation of a
variety of ideas about frame systems in an exportable programming package. The UNITS
package has been used to build working Al systems for scientific applications. Finally, work
on KLONE (Brachman, 1978) represents current research in the theory and design of frame-
based systems.

Work on script-based processing in Al has for the most part been carried on by Schank
and Abelson (1977) and their colleagues. They have used scripts to Investigate the notions
of causality and the understanding of sequences of events. In particular, the SAM program
(article Natural Language.FS) attempts to understand short stories using a script to guide
the interpretation of occurrences in the story. After establishing the appropriate script and
filling some of its slots with information from the story, SAM can make inferences from script-
based information about similar events.

Summary

Frames and scripts are recent attempts by Al researchers to provide a method for
organizing the large amounts of knowledge needed to perform cognitive tasks. Much of the
work in this area is quite conjectural, and there are many fundamental differences in
approach among the researchers who have designed frame-based systems. The
development of large-scale organizations of knowledge and the concomitant ability of these
structures to provide direction for active cognitive processing is the current direction of Al
research in knowledge representation. A number of serious problems must be solved before
the conjectured benefits of frames will be realized.
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